I3 TEXAS Application Report
INSTRUMENTS SPRAB90_January 2010

The TMS320C6000 EABI Migration Guide

C6x CGT v7.0 Development Team

ABSTRACT

This document describes the changes which must be made to existing COFF ABI libraries and
applications to add support for the new EABI. This is not an overview of EABI; only those details needed
for migration are described here.

This document's audience is object library vendors and developers who have been supporting COFF and
wish to migrate their code base to ELF.

Contents
1 LI L= OG0 1
2 T T =0T T = L =T o) 2
3 C and C++ Implementation-Defined Language Changesc.c.eeeiiiiiiiiiiiiieiiiie i srriaeesanannees 3
4 Assembly Code Changes (C and C++ ABI ChangesS)uueeiiiiieesiiaiiireiaaiantessaaanrassaaansasssaanneesannns 10
5 Linker Command File Changesiueiiiiiiieiiiiire s s s s e rn s aa e sannenas 15
6 Y STt o= 0T L 17
AppPeNndiX A CBX EABI SECHOMNS .uuutiiiieeesssiineeessaanneessaanneestaanneessasnnessessnneesssssneessessnnesssssnnesssennns 18
Appendix B Special SYMDOIS . .uuueiiiiiii i s 19
Y o] o 1=T g Lo [QO o =1 | T gl 0 o Tod 1T LN 20
List of Figures
1 [0 0T = N = S 1= ox 11 18
List of Tables
1 TYPICAI IONQ USE CaSES «uuutetiaisneesaaianeesssanteessasnseessannsnessesnnnesssssnneessssnnnessssnnnessssnnsnnssnnnns 4
2 Other C6000 EABI SECHONS 1. uutiiussiseiisssrate s st sae e s san e s aaar s asanrasanes 18
3 S 0= ot F= LS} 2] 0T 19

1 The C6000 EABI

C6000 code generation tools version 7.0 introduces support for a new ELF-based ABI to support new
features such as shared object files. This document does not describe ELF or the C6000 EABI, nor does it
describe the new features available only in EABI. This document is focused on migration of COFF ABI
applications to EABI and producing code which works equally well with both COFF ABI and EABI.

The details of the C6000 EABI can be found in The C6000 Embedded Application Binary Interface
Application Report (SPRAB89).
Documentation for features mentioned can be found in the TMS320C6000 Optimizing C Compiler User’s

Guide (SPRU187, revision P or later) and the TMS320C6000 Assembly Language Tools User's Guide
(SPRU186, revision R or later).

SPRAB90-January 2010 The TMS320C6000 EABI Migration Guide 1
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRAB89
http://www.ti.com/lit/pdf/SPRU187
http://www.ti.com/lit/pdf/spru186
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAB90

13 TEXAS

INSTRUMENTS
Migration Strategy www.ti.com
2 Migration Strategy
There are several strategies for dealing with the migration of code from COFF to ELF. The recommended
strategy is to update all code bases to work for both COFF and ELF.
2.1 Will COFF Support Be Eliminated?
ELF and EABI will eventually completely displace COFF and COFF ABI; however, COFF will continue to
be supported for the foreseeable future. The ELF format is necessary to add certain new features such as
dynamic shared objects, so support for such features cannot be added to COFF. While COFF will not be
upgraded, it will continue to be fully supported.
2.2 Should an Existing COFF Program Be Converted to ELF?
A working COFF program need not be converted to ELF unless ELF-only features such as dynamic linking
are needed. COFF will continue to be supported for the foreseeable future. This strategy is best if the
program is self-contained and will not share code with ELF projects.
Library code which will be reused in a later ELF project may need adjustment to work for both COFF and
ELF.
2.3 Distribute Libraries in Both COFF and ELF Formats
Library vendors are strongly encouraged to distribute both COFF and ELF versions of each library.
Libraries which are not available in both formats will be unusable to a significant portion of the customer
base. For portably-written C code, the effort to support both COFF and ELF is minor, and for assembly
code is typically a matter of renaming global symbols using conditional compilation.
2.4 Supporting Both COFF and ELF
By using conditional compilation judiciously, it is easy to make code work with both COFF and ELF;
however, two sets of object files will be necessary, as linking COFF and ELF object files together is not
allowed.
24.1 Predefined Symbol: _ TI_EABI__
Both the compiler and assembler pre-define the symbol __ TI_EABI__ to indicate that the source is being
compiled under EABI. This option is defined when the --abi=eabi option is specified. Where the C code or
assembly code cannot be written in a way that works for both COFF ABI and EABI, use this symbol to
conditionally compile the appropriate version of the code.
#if defined(__TI_EABI_)
static char abi[] = "EABI";
#el se
static char abi[] = "COFF ABI";
#endi f
printf("ABI used: %\n", abi);
24.2 Dealing With COFF-Only Object Libraries

To convert an object file from COFF ABI to EABI, it is strongly recommended that you have access to at
least the assembly code so that it can be appropriately modified and reassembled. If you do not have
source code, such as the case when you only have an object library from a vendor, the best choices are
to either leave the application as a COFF ABI application, or to request the vendor release an EABI
version. There is no tool support for converting a COFF object file to an ELF object file;
reverse-engineering the assembly code by using a disassembler is error-prone and could violate licensing
agreements for some packages.

The TMS320C6000 EABI Migration Guide SPRAB90-January 2010
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAB90

I

TEXAS
INSTRUMENTS

www.ti.com C and C++ Implementation-Defined Language Changes

3

3.1

3.1.1

3.1.2

C and C++ Implementation-Defined Language Changes

Programs written entirely in C or C++ will have the easiest migration path. Portably written C and C++
code will probably not need any changes at all, so such code can be shared unmodified between COFF
and ELF projects.

Maximally portable C and C++:

« Does not rely on exact sizes of types beyond what the C standard guarantees
» Does not assume a particular bit-field layout

» Does not assume a particular enum type size

* Does not use intrinsics

» Does not use asm("’) statements

If your code avoids these non-portable assumptions, the code may be reused unmodified without
inspection. Code which does make one of these assumptions will need to be examined to determine if the
code will behave differently for EABI and COFF ABI. This section describes where EABI and COFF ABI
differ with regard to C and C++ language features.

The long int Type is 32 Bits

The long int (or long) integer type is 32 bits wide in the EABI model, whereas it is 40 bits wide in the
COFF ABI model. This change has far-reaching consequences.

No Native 40-Bit Integer Type

C6000 EABI does not support a native 40-bit integer type. This means that types related to int40_t are not
available under EABI, and expressions involving types related to long can have different results under
EABI. Automatic backward compatibility is not possible because each occurrence must be individually
examined to determine the appropriate change for EABI.

Uses of long in C code in EABI will necessarily use either a 32-bit type (int or long) or a 64-bit type (long
long). If a 32-bit type is appropriate, the code need not be changed. However, if a 40-bit or wider type is
required, the code must be changed to use a 64-bit type.

Code using C6x intrinsics involving a long type will need to be rewritten using the new 40-bit arithmetic
intrinsics described in Section 3.1.6.

Examine the Intent of Each Declaration and Expression Involving Type long

The predominant use of long in the industry is to indicate that the object should be at least 32 bits. C6000
COFF ABI defines long to be 40 bits, which conforms to the C standard, but can cause problems in
programs that were written assuming that long was exactly 32 bits. For general-purpose code written
without knowledge of C implementations where long is not exactly 32 bits, EABI can be used without
modifying the code. However, for programs written specifically for C6000, it's not unlikely that the user
may be relying on long being 40 bits to gain extra precision. However, it is also not unlikely that the type
long was used reflexively to mean a 32 bit type, as this behavior is pervasive in industry. The intent of the
programmer must be considered for each occurrence, and the types adjusted accordingly.

The best practice for portable code is to use intention-revealing names, for which the types defined in
stdint.h are particularly useful. Using these types, it is possible to write code which uses the correct types
for both COFF ABI and EABI, and the fact that the types are correct will be obvious to someone who
reads the code.

SPRAB90-January 2010 The TMS320C6000 EABI Migration Guide 3
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAB90

C and C++ Implementation-Defined Language Changes

13 TEXAS
INSTRUMENTS

www.ti.com

3.1.3 Use Cases for Declarations Involving long
Table 1 shows typical use cases for long, along with the suggested type to use in code shared between
COFF ABI and EABI:
Table 1. Typical long Use Cases
Bits Needed St(;roangceefriée a Exzcgéir?cnefﬁsed Native Types stdint.h Types
At least 32 bits No No long® or int® int32_t, int_least32_t, or int_fast32_t
At least 32 bits Yes - int? int_least32_t
At least 32 bits Yes int? int_fast32_t
int> may be used,
Exactly 32 bits - but int32_t is int32_t
preferred
) COFF: long* COFF: int40_t, int_least40_t, or int_fast40_t
At least 40 bits No)))
EABI: long long EABI: int64_t, int_least64 _t, or int_fast64_t
] COFF: long* COFF: int_fast40 _t
At least 40 bits Yes)
EABI: long long EABI: int_fast64_t
Exactly 40 bits COFF: int40_t
(needs saturation - Not recommended) o
and truncation) EABI: int64_t plus 40-bit intrinsics
@ The type long can be left in the code, but it is better to use intention-revealing types from stdint.h
@ The type int can be used, but this type is not portable to implementations where int is only 16 bits.
Another use common use case is that there is an API in use which requires that the type be long. For
instance, standard C library functions like printf may require certain arguments to be of type long. In these
instances, continue to use the type long.
3.14 No 40-Bit Intrinsics
Because C6000 EABI does not support a native 40-bit integer type, the following intrinsics have different
prototypes under EABI. Where COFF ABI uses a 40-bit type, EABI uses a 64-bit type. The EABI
prototypes are:
* long long _lsadd(int srcl, long long src2)
e long long _lssub(int srcl, long long src2)
* long long _labs(long long src)
* int_sat(long long src)
* int _Inorm(long long src)
» unsigned long long _dtol(double src)
» double _ltod(unsigned long long src)
e long long _ldotp2(int srcl, int src2)
The following new intrinsics operate on 64-bit integer types. These intrinsics can be used where code was
written for COFF ABI using a native 40-bit integer type and the programmer intended to rely on 40-bit
saturation and truncation. This allows the compiler to use the more efficient 40-bit arithmetic assembly
instructions to perform these operations.
* long long _add40_s32 (int srcl, int src2);
e unsigned long long _add40_u32 (unsigned srcl, unsigned src2);
e longlong add40_s40 (int srcl, long long src2);
» unsigned long long _add40_u40 (unsigned srcl, unsigned long long src2);
* int _cmpeqg4o0 (int srcl, long long src2);
* int _cmpgt40 (int srcl, long long src2);
e int _cmplt40 (int srcl, long long src2);
e int_cmpltu40 (int srcl, long long src2);
e int_cmpgtudO (int srcl, long long src2);
» long long _mov40 (long long src);
4 The TMS320C6000 EABI Migration Guide SPRAB90-January 2010

Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAB90

13 TEXAS
INSTRUMENTS

www.ti.com C and C++ Implementation-Defined Language Changes

* long long _neg40 (long long src);

» long long _labs40 (long long src);

* long long _shl40 (long long src1, int src2);

» long long _shr40 (long long srcl, int src2);

e unsigned long long _shru40 (unsigned long long src1, int src2);
e unsigned long long _shl40_s32 (int srcl, int src2);

* longlong sub40_s32 (int srcl, int src2);

* unsigned long long _sub40 u32 (unsigned srcl, unsigned src2);
* long long _sub40_s40 (int srcl, long long src2);

* long long _zero40 (src);

These are examples of intrinsic usage:

Example 1. COFF ABI (1)

#if defined(_TMS320C6X) && !defined(__TI_EABI_)
extern int a;

extern long b;

long result = _|sadd(a, b);

#endi f

Example 2. EABI (1)

#i f defined(_TMs320C6X) && defined(__TI_EABI_)
extern int a;

extern long | ong b;

long long result = _|sadd(a, b);

#endi f

Example 3. COFF ABI (2)

#i f defined(_TMS320C6X) && !defined(__TI_EABI_)
extern int a;

extern long b;

long result = a + b;

#endi f

C6000 recognizes this case and generates an efficient 32x40 ADD.

Example 4. EABI (2)

#i f defined(_TMs320C6X) && defined(__TI_EABI_)
extern int a;

extern long | ong b;

long long result = _add40_s40(a, b);

#endi f

Without using this intrinsic, the compiler may not be able to recognize the efficient 32x40 ADD.

SPRAB90-January 2010 The TMS320C6000 EABI Migration Guide 5
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAB90

13 TEXAS

INSTRUMENTS
C and C++ Implementation-Defined Language Changes www.ti.com
3.15 C Declarations of Assembly Functions Involving long int
A C-callable assembly function written for COFF ABI which accepts or returns a 40-bit value in a register
pair will have been declared in the C code with a prototype involving the long int type. Prototypes for such
functions will need to be changed in EABI.
Any 40-bit values are stored in 64-bit containers, either a 64-bit register pair or a 64-bit double word in
memory, including when passed to or returned from a function.
Because the container for a 40-bit value is the same size and alignment as that for a 64-bit value, you can
usually change the prototype for such functions to use the long long int type instead of long int without
altering the function's behavior. In the unusual case that the assembly function does not sign-extend
returned 40-bit values into the 64-bit return register pair, the calling function will need to explicitly handle
the sign extension in EABI.
» COFF ABI C Source
extern long blue_fish(long | _arg);
long red_fish()
{
return blue_fish(0x1234);
}
» Compiler Generated Assembly
_red_fish:
6 | return blue_fish(0x1234);
CALLRET . S1 _blue_fish ;16
ZERO L A5 16l
MVK . S1 0x1234, A4 N
NOP 3
With long integer types of size 32-bits under the EABI, you would need to update the C source as follows:
* EABI C Source
extern long |l ong blue_fish(long long | _arg);
long long red_fish()
return blue_fish(0x1234);
}
» Compiler Generated Assembly
red_fish:
6 | return blue_fish(0x1234);
CALLRET . S1 bl ue_fish ;] 6]
ZERO .lL1 A5 ;16
MVK .s1 0x1234, A4 ;
NOP 3
NOTE:
e The compiler does not add leading underscore to C names (red_fish and blue_fish)
under the EABI (see Section 4.1). Otherwise, the generated assembly is the same under
EABI vs. COFF ABI.
* Need to update declaration of blue_fish()
« Need to update return type of red_fish() per use of return value from blue_fish()
6 The TMS320C6000 EABI Migration Guide SPRAB90-January 2010

Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAB90

I

TEXAS
INSTRUMENTS

www.ti.com C and C++ Implementation-Defined Language Changes

One way to write the above C source that would be compatible under both the COFF ABI and EABI
models is to write the following:

e« C Source
#i ncl ude "int40. h"

extern I NT40 bl ue_fish(INT40 | _arg);

I NT40 red_fish()
{

}
* Header File

#i ncl ude <stdint. h>
#if defined(__TI_EABI) && !'defined(__TI_40BIT_LONG)

return blue_fish(0x1234);

typedef long | ong I NT40;
typedef unsigned | ong | ong U NT40;
#el se
typedef |ong | NT40;
typedef unsigned | ong | ong U NT40;
#endi f
3.1.6 Backwards Compatibility: --long_precision_bits
Source code which makes the assumption that long is 40 bits must eventually be changed.
As a temporary transition aid, the compiler supports the --long_precision_bits=40 option. Type long
becomes 40 bits, so expressions involving long will have the same value as they do for COFF ABI the
original intrinsics are available. int40_t is available.
This is strictly a transitional aid, and will be deprecated. This option should only be used for relatively
self-contained projects. Use the option only during migration to EABI. This option effectively creates a
distinct, incompatible ABI
Do not distribute libraries compiled with this option, because vendor support for this ABI will be very
limited.
Pre-built RTS libraries compatible with long_precision_bits=40 EABI mode are not included with the
product. The user must explicitly compile them to use them.
Obiject files produced using this option are not compatible with the libraries that come with the toolset. The
libraries must be rebuilt using long_precision_bits=40. Instructions for rebuilding the library can be found in
the TMS320C6000 Optimizing C Compiler User's Guide, in the Using Run-Time-Support Functions and
Building Libraries chapter.
Predefined symbols __TI_32BIT_LONG__ _ TI_40BIT_LONG__
The compiler defines one of two preprocessor symbols depending on the mode. The other symbol is left
undefined.
e TI 32BIT_LONG__ is defined in EABI (--abi=eabi) when --long_precision_bits=40 is not specified.
 _ TI_40BIT_LONG__ is always defined in COFF ABI, and also in EABI when --long_precision_bits=40
is specified.
Instead of assuming that long is 32 bits in EABI, these macros can be used:
#if defined(_TMS320C6X) && defined(__TI _40BI T_LONG)
extern int a;
extern long b;
long result = _|sadd(a, b);
#el se
extern int a;
extern long | ong b;
long long result = _|sadd(a, b);
#endi f
SPRAB90-January 2010 The TMS320C6000 EABI Migration Guide 7

Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAB90

13 TEXAS

INSTRUMENTS
C and C++ Implementation-Defined Language Changes www.ti.com
3.2 Bit-Field Layout
The declared type of a bit-field is now the container type. This means that some structures will have a
different layout in COFF ABI and in EABI.
For code that must be portable between COFF ABI and EABI, bit-fields should not be used. If they must
be used, the bit-field may need to declared with distinct conditionally-compiled code.
3.21 C and C++ Standard Requirements for Bit-Fields
The declared type of a bit-field is the type that appears in the source code. To hold the value of a bit-field,
the C and C++ standards allow an implementation to allocate any addressable storage unit large enough
to hold it, which need not be related to the declared type. The addressable storage unit is commonly
called the container type, and that is how we refer to it in this document. The container type is the major
determinant of how bit-fields are packed and aligned.
C89, C99, and C++ have different requirements for the declared type:
* C89 int, unsigned int, signed int
e C99 int, unsigned int, signed int, Bool, or "some other implementation-defined type"
e C++ any integral or enumeration type, including bool
There is no long long type in strict C++, but because C99 has it, C++ compilers commonly support it as an
extension. The C99 standard does not require an implementation to support long or long long declared
types for bit-fields, but because C++ allows it, it is not uncommon for C compilers to support them as well.
The TI compiler supports using any integral type as the declared type in both C and C++, but only in
EABI. For COFF ABI, bit-fields must have declared type int, unsigned int, or signed int.
3.2.2 EABI Layout Scheme
For EABI, the declared type is also used as the container type. This has two major consequences:
e The containing structure will be at least as large as the declared type
« If there is not enough unused space in the current container, the bit-field will be aligned to the next
container.
If a 1-bit field has declared type int, the EABI layout will allocate an entire int container for the bit-field.
Other fields can share the container, but each field is guaranteed to be stored in some container exactly
the size of the bit-field.
Example 1 (P stands for padding):
struct S{ int a:1; };
1111111111222222222233
01234567890123456789012345678901
aPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP (one 32-bit contai ner)
Example 2:
struct S{ int a:l; int b:1; };
1111111111222222222233
01234567890123456789012345678901
abPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP (one 32-bit contai ner
Example 3:
struct S { char a:7; char b:2; };
111111
0123456789012345
aaaaaaaPbbPPPPPP (two 8-bit containers)
8 The TMS320C6000 EABI Migration Guide SPRAB90-January 2010

Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAB90

I

TEXAS
INSTRUMENTS

www.ti.com C and C++ Implementation-Defined Language Changes

Example 4:
struct S { char a:2; short b:15; };
1111111111222222222233

01234567890123456789012345678901
aaPPPPPPPPPPPPPPbbbbbbbbbbbbbbbP

(one 8-bit container, one 8-bit pad, and one 16-bit
cont ai ner)

Further reading on the bit-field layout can be found in the 1A64 C++ ABI specification
(http://www.codesourcery.com/public/cxx-abi/abi.html).

3.2.3 COFF ABI Layout Scheme
The COFF ABI scheme uses a different strategy. It starts by using the smallest possible container, and will
grow the current container if growing it will allow the bit-field to be allocated at the current position.
Example 1:
struct S{ int a:l; };
01234567
aPPPPPPP (one 8-bit container)
Example 2:
struct S{ int a:1; int b:1; };
01234567
abPPPPPP (one 8-bit container)
Example 3:
struct S { char a:7; char b:2; };
111111
0123456789012345
aaaaaaabbPPPPPPP (one 16-bit container)
Example 4:
struct S { char a:2; short b:15; };
1111111111222222222233
01234567890123456789012345678901
aabbbbbbbbbbbbbbbPPPPPPPPPPPPPPP (one 32-bit container)
3.2.4 Compatibility Impact of EABI
EABI can produce a layout that is not quite the same as it would be in COFF ABI. Programs which rely on
using bit-fields for precise data layout, such as for reading a binary file or setting bits in a status register
should be examined for compatibility. Such test cases may need to use conditional compilation to change
the declared types of bit-field definitions. However, many existing test cases will be unchanged.
Incompatibilities fall into one of two categories: structures that are larger than expected, and bit-fields that
are at different positions.
Structures can be larger with EABI if they contain bit-fields with mostly unused bits. If the structure needs
to use the smaller size that would have been used with COFF ABI, the declared type needs to be changed
to a type of the desired size, such as char.
Bit-fields can usually only be at a different position in cases when there is enough space left over in the
current container to fit the field width of the next bit-field, but not a properly-aligned object of the declared
type. The narrower the declared type on a bit-field, the more likely there will be an incompatibility.
Declaring all bit-fields with an int-sized type (as is typical of code written for C89), will minimize
incompatibility of bit-field position.
SPRAB90-January 2010 The TMS320C6000 EABI Migration Guide 9

Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.codesourcery.com/public/cxx-abi/abi.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAB90

13 TEXAS
INSTRUMENTS

Assembly Code Changes (C and C++ ABI Changes) www.ti.com

3.25

Access Type

For efficiency, the compiler may access a bit-field with a type which does not match either the declared
type or the container type. The declared type and container type are strictly used to determine bit field
packing and alignment. The type used by the CG to actually load the bit-field is the access type. It can be
a narrower type, computed from the size and offset of the bit-field. For instance, in the following EABI
example, the container type is 32 bits, but the bit-field will be loaded using an 8-bit access:

struct S{ int :8; int bf:8; };

For EABI, the compiler will not use a narrower type for volatile bit-fields (bit fields declared with a
volatile-qualified type); it will instead use exactly the declared type.

3.3 Enumerated type size
Many enumeration types have members with values that are small enough to fit into integer types smaller
than int. COFF ABI always uses int-sized containers to store variables of such enumeration types. EABI
will use types smaller than int when possible. For C++ code, both COFF ABI and EABI will use integer
types wider than int for enumeration types with values larger than will fit into int.
3.4 asm() Statements
The contents of asm() statements are really assembly code, and need to be changed as shown in
Section 4.
4 Assembly Code Changes (C and C++ ABI Changes)
The C ABI is how the compiler expresses C code programs in assembly language. Assembly code that
defines a C-callable function or calls a C function must conform to the ABI. This section describes
changes which must be made to assembly code due to the changes made by EABI to the way C and C++
features are implemented in assembly code.
The changes that will be necessary to existing assembly code are primarily limited to places where the
assembly code interfaces with C or C++ code. Assembly functions which do not interface with C or C++
code directly do not need to be changed.
4.1 COFF Underscore Name Mangling
COFF ABI uses underscores to keep the assembly code name space and the C code namespace
separate. The C compiler prepends an underscore to every externally-visible identifier so that it will not
collide with an assembly object with the same name. We call this the COFF underscore.
This source code:
int x;
int func(int y) { }
Becomes in COFF ABI:
.bss x, 4, 4
_func:
EABI does not add the COFF underscore. This is a generic ELF requirement. The user is responsible for
making sure user-defined names don't collide. Assembly code which is intended to work for both COFF
ABI and EABI will need to handle the difference in mangling.
int x;
int func(int y) { }
Becomes in EABI:
.bss x, 4, 4
_func:
10 The TMS320C6000 EABI Migration Guide SPRAB90-January 2010

Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAB90

I} TEXAS
INSTRUMENTS
www.ti.com Assembly Code Changes (C and C++ ABI Changes)
4.2 Removing the COFF Underscore
COFF ABI adds a leading underscore to C and C++ symbols to prevent name collisions with symbols
defined in hand-coded assembly, but EABI does not add this underscore. When using COFF ABI, a
function named red_fish written in C will produce a function entry label with the name _red_fish in the
assembly source. Under the EABI, the name of the function as it appears in the assembly source will be
exactly as it appears in the C code, so the function entry label for red_fish will be red_fish.
Functions and variables may be defined in assembly code and used in C code. To use functions and
variables in a hand-coded assembly file from a COFF ABI program in EABI, the symbol label needs to be
changed, or augmented with a second label. There are several approaches to this issue.
421 Conditional Redefinition Method
The preferred solution that will be compatible with both the COFF and EABIs is to replace the COFF ABI
mangled name with an EABI C name using an .asg assembler directive. For example, a function red_fish
called from C will have a definition in the COFF ABI assembly code with a function entry label named
_red_fish. Insert a conditional .asg directive in front of the definition as follows:
i __TI_EABI__
. asg red_fish, _red_fish
.endi f
.global _red_fish
_red_fish:
<start of function>
In the above example, all instances of _red_fish will be replaced with red_fish due to substitution symbol
expansion. The assembler will define the label, red_fish and make it visible externally via the .global
directive.
4.2.2 Double Label Method
Another easy solution is to provide two labels, one providing the COFF ABI mangled name, and the other
providing the EABI name.
.global _red_fish, red_fish
_red_fish:
red_fish:
<start of function>
A drawback to this solution is that there remains an extra symbol name which might collide with a
user-defined name.
4.2.3 Preprocessor Redefinition Method
For projects where the assembly code cannot be readily modified, the assembler’s substitution symbol
mechanism can be used to redefine individual symbols. The technique is to create either a C source
header file or an assembly include file which redefines each symbol. This include file can then be implicitly
included in an assembly file by using the --include_file assembler option.
4.2.4 Backward Compatibility: --strip_coff_underscore
For projects where the assembly code cannot be readily modified, the compiler provides the
--strip_coff_underscore option which instructs the assembler to translate COFF ABI mangled external
symbol names to EABI by removing one leading underscore. This provides some assistance in migrating
assembly source files to the EABI by reducing the need to alter your assembly source files.
For many programs, just using this option will be sufficient to use COFF ABI assembly code in EABI
programs. However, name collisions are possible if the assembly source already has two external symbols
with names that collide when the underscore is removed, such as sym and _sym.
Further changes may still be necessary; this option does not handle symbol names appearing in C asm()
statements or linker command files. Those cases must be modified manually.
SPRAB90-January 2010 The TMS320C6000 EABI Migration Guide 11

Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAB90

13 TEXAS
INSTRUMENTS

Assembly Code Changes (C and C++ ABI Changes) www.ti.com

It is very likely that a particular hand-coded assembly file will only need the COFF underscore removed to
be valid for EABI. For assembly files of this nature, compiler option --strip_coff _underscore instructs the
assembler to strip the underscore from every external identifier.

For example, to use this source code:

mai n. c:
int main() { red_fish(); }
fish.asm
.global _red_fish
_red_fish:

For COFF ABI enter this on the command line:
cl6x main.c fish.asm-z

For EABI enter this on the command line:

cl 6x main.c fish.asm--abi =eabi --strip_coff_underscore -z

4.3 C++ Name Mangling
The compiler uses name mangling to encode into the name of C++ functions the types of its parameters
so that the linker can distinguish overloaded functions.
COFF ABI and EABI use different name mangling schemes for C++ functions, so assembly code which
refers to the mangled names directly will need to be changed to use the EABI mangling.
This is an example of difference in name mangling:

int func(int); int func(float);

COFF ABI _func__Fi _func__Ff
EABI _Z4funci _ZA4f uncf
Direct references to mangled C++ names are unlikely unless the output assembily file from compiling a
C++ file was captured and hand-modified. The best migration path is to just re-compile the original C++
file. If the hand-modifications are too extensive to do this, the fastest method to find the EABI mangled
names is to re-compile the original C++ file and examine the generated assembly code to see the EABI
mangled names.
Pass the --abi=elfabi option to dem6x to demangle EABI C++ names.

4.4 Structures Passed or Returned By Value
In COFF ABI, all structs that are passed or returned by value in C code are transformed by the compiler
so that in the generated assembly code they are passed by reference. The compiler puts the struct in a
temporary location and passes a pointer to this temporary in place of the struct.
In EABI, small structures (64 bits or smaller) passed or returned by value in C code are passed or
returned by value in the generated assembly code, either in a register or on the stack as appropriate.
Larger structures are passed by reference as in COFF ABI.
C-callable assembly functions that accept, return, or pass small structures by value need to be re-written
to follow this convention.

12 The TMS320C6000 EABI Migration Guide SPRAB90-January 2010

Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAB90

I

TEXAS
INSTRUMENTS

www.ti.com Assembly Code Changes (C and C++ ABI Changes)

4.5

4.6

4.7

Legacy .cinit in Assembly Source

The COFF ABI uses the .cinit mechanism to initialize global variables. This is intended to be used only by
the compiler, but some hand-coded assembly source encodes variable initialization with hand-encoded
.cinit tables. This will work under COFF ABI as long as the encoding is correct. However, this method will
not work in EABI, because it uses direct initialization instead, which means the linker creates all .cinit
records.

The recommended migration path is to rewrite the .cinit initialization as direct initialization and let the linker
handle creating the initialization record. For example, the following .cinit record can be rewritten as shown:
gl ob: .usect ".far", 8, 4 ; 8 byte object aligned to 4 bytes in uninitialized section ".far"

.sect ".cinit"

.align 8

.field 8, 32 ; length in bytes

.field glob, 32 ; address of menory to initialize

.field 2, 32 ; initialize first word to 2

.field 3, 32 ; initialize second word to 3

.sect ".fardata", RW; 8 byte object in initialized section ".fardata"
.align 4

gl ob: .field 2, 32 ; directly initialize first word to 2
.field 3, 32 ; directly initialize first word to 3

For more information on using direct initialization, see the TMS320C6000 Optimizing C Compiler Tools
User’'s Guide.

Legacy STABS Directives in Assembly Source

Some COFF ABI assembly code can contain STABS (COFF debug) directives, particularly if the assembly
code was originally generated by the compiler.

ELF does not support STABS, and the assembler will give an error message if the input file contains
STABS directives. To reuse the file for EABI, strip out all of the STABS directives.

Example STABS directives: .file, .func, .block, .sym

DP-Relative Data Pointers

The compiler places some data, typically non-aggregate objects, in the .bss section. This section is
intended to be accessed by DP-relative addressing, also called near addressing.

All of the objects in the .bss section need to be addressable through the limited offset range from the DP
register, so the linker takes care to collect all the input .bss sections into a contiguous output .bss section.
This output section may be placed anywhere in memory. The address of the output section is placed in
the DP register by the bootstrap routine.

In COFF ABI, the .bss section is the only near section. The symbolic name for the address of this section
is $bss, and this is the symbol used to initialize DP. In EABI, the .bss section is not the only near section,
so $bss may not accurately reflect the proper DP initialization value. Instead, the symbol used by EABI to
initialize the DP register is __TI_STATIC_BASE. References to $bss in COFF ABI hand-coded assembly
need to be changed to references to __TI_STATIC_BASE for EABI.

Because the symbol $bss may be used frequently in certain idioms where the address of a variable is
loaded into a register, in EABI mode the assembler will recognize some uses of $bss and automatically
change them to relocations involving __TI_STATIC_BASE. In COFF ABI, expressions involving $bss
would have been handled with a relocation expression. A relocation expression is a series of
stack-machine like instructions that dictate how to compute the value of a relocatable expression. The TI
ELF object format does not support relocation expressions (see Section 6.1).

SPRAB90-January 2010 The TMS320C6000 EABI Migration Guide 13
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAB90

13 TEXAS
INSTRUMENTS

Assembly Code Changes (C and C++ ABI Changes) www.ti.com

DP-relative data accessed with a near access works the same in EABI as COFF ABI:
LDW *+DP(x), A4

However, code using a COFF ABI far idiom must be changed:

MK (x-$bss), A4
ADD DP, A4, A4
LDW*A4, A4

to this:

MVK $DPR_byte(x), A4
ADD DP, A4, A4
LDW*A4, A4

The assembler will recognize the COFF idiom above and make the change automatically, but only for the
following expressions. The available operators are $DPR_word, $DPR_hword, and $DPR_byte. Refer to
the TMS320C6000 Assembly Language Tools User’'s Guide (SPRU186) for further details.

(x - $bss) --> $DPR byt e(x)
(x - $bss) [/ 2 --> $DPR_hwor d(x)
(x - $bss) >> 1 --> $DPR_hword(x)
(x - $bss) / 4 --> $DPR wor d(x)

$bss) >> 2 --> $DPR word(x)

Other references to $bss, such as in the linker command file, will be changed to be references to
__TI_STATIC_BASE. In this way, the assembler and linker will automatically change most references to
$bssto __ TI_STATIC_BASE. Any other uses of $bss, such as in arithmetic expressions involving $bss,
will need to be changed by the user.

4.8 Run-Time-Support Library Helper Functions
The library contains some helper functions to perform complicated operations for certain high-level
language features. It is not expected that hand-coded assembly code would call these functions, but it is
possible, particularly if the output of the compiler is tweaked by hand and transformed to an assembly
input file. These helper functions have different names in EABI. If the assembly code directly calls a library
helper function, the code will need to use the new name for the function. The easiest way to deal with
these function is to use the assembler --include_file option to include a list of assembler defines to change
the names of the old functions.
For example, create a C header file (coff_to_elf_helpers.h)
#define __divi __c6xabi _divi
#define __divu __c6xabi _divu
Include this file in another header (coff _to_elf helpers.i):
.cdecls C, LIST, "coff_to_elf_hel pers.h"
And include this file at the beginning of every assembly file:
cl 6x --include_file=coff_to_elf_helpers.i
Attached to this paper you should find header files with redefinitions for all of the C ABI run-time support
functions from the COFF ABI name to the EABI name. For more information, see Appendix C.
14 The TMS320C6000 EABI Migration Guide SPRAB90-January 2010

Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spru186
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAB90

I

TEXAS

INSTRUMENTS

www.ti.com Linker Command File Changes

5

5.1

511

512

5.1.3

Linker Command File Changes

When porting a COFF ABI application to EABI, the most likely place the user will need to make a change
is the linker command file. The linker supports linker command file preprocessing. See the TMS320C6000
Assembly Language Tools User's Guide (SPRU186).

EABI Sections

EABI re-uses most compiler-generated section names used by COFF ABI, and also introduces new
section names. Each section needs to be allocated to appropriate memory. See Appendix B for all the
sections generated by the toolset.

DP-relative Data Sections
EABI introduces the following DP-relative data sections:

.rodata initialized read-only data
.neardata initialized near read-write data

These sections are similar to .bss, except that they are initialized (contain data in the object file). The
three DP-relative sections must be contiguous, which is most easily accomplished by using GROUP in the
linker command file:

GROUP (NEAR DP_RELATI VE)
{

. near dat a
.rodata
. bss

} >BMVEM

Read-Only Sections
EABI introduces the following read-only sections

.init_array data, used to register C++ global variable constructors
.c6xabi.exidx data, index table for C++ exception handling
.cbxabi.extab data, unwinding instructions for C++ exception hand

The data section .init_array serves the same purpose .pinit does for COFF ABI. EABI does not use the
name .pinit.

Read-Write Sections
EABI introduces the following read-write sections:

fardata initialized far data
far uninitialized far data
COFF ABI also uses the section name .far for uninitialized far data.

SPRAB90-January 2010 The TMS320C6000 EABI Migration Guide 15
Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spru186
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAB90

13 TEXAS
INSTRUMENTS

Linker Command File Changes www.ti.com

5.2

5.3

No Leading Underscores

The symbol names used in linker command files are the names as they appear in object files, which for
COFF means the mangled names. For EABI, the object file names are the same as the high-level
language names, so any reference or definition of a symbol in a linker command file will need to be
changed. For instance, to set a symbol to the value of the function main.

COFF ABI:

mai naddr = _nai n;
EABI:

mai naddr = nai n;
COFF ABI:

_synbol = 0x1234;

EABI:
synbol = 0x1234;

Conditional Linking On by Default

Conditional linking, or dead-code removal, is a process performed by the linker in which the linker creates
a reference graph of all input sections that were presented to the linker. If a given input section is marked
as a candidate for removal and there are no references to the input section that can be traced to an entry
point or interrupt function in the application, then that section will not be included in the link. Conditional
linking is enabled by default in ELF.

To disable conditional linking entirely, use the —unused_section_elimination=off option. All sections in all
input files will be retained.

To force the linker to retain an individual symbol, use the —undef_sym=symbolname (or -u symbolname)
option in the linker command file. The --retain=symbolname option can also be used to retain a symbol.

To retain a section by name, use --retain=filename(sectionname). If the section is in a library, use
--retain=librarynamex<filename>(sectionname). This option allows a wildcard pattern.

The .symdepend directive may also be useful to retain sections with symbols which appear to have no
references by informing the linker of an implicit dependence as shown in Example 5.

Example 5. Using the .symdepend Directive to Retain Sections With Unreferenced Symbols

.sect "vanishing_section"

vani shi ng_synbol :

.word 1

.sect "reached_fromc_int0O0O"
. synmdepend vani shi ng_synbol, myfunc

nyfunc:

16

The TMS320C6000 EABI Migration Guide SPRAB90-January 2010
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAB90

I

www.ti.com

TEXAS
INSTRUMENTS

Miscellaneous

6 Miscellaneous

6.1 Relocation Expressions Are Not Supported
Assembler expression involving two or more relocatable symbols cannot be represented in C6000 ELF
object files. Any such expression will need to be rewritten into two or more instructions. The COFF ABI
DP-relative idioms recognized by the assembler are the exceptions.
For example, the following will not work if both symbols are resolved at link time:
t hi ng_si ze: .word (thing_end - thing_begin)

6.2 Partial Linking
Relocation entries are not processed during a partial link under the EABI. Relocation entries involving a
static base reference will simply be carried forward until the user is ready to create an executable output
file with the linker. At that point, the linker will define a value for the __ TI_STATIC_BASE symbol that is
used in the resolution of any static-base relative relocation that is encountered.

6.3 —symdebug:coff and —symdebug:profile_coff Are Not Supported
These options request the use of STABS debugging information, which is available only for COFF files.
ELF files must use DWARF. If there are any STABS debug directives in an assembly file (this typically
only happens for assembly code generated by the compiler), these directives must be deleted or
conditionally compiled out; the assembler will reject these directives when assembling to an ELF file.

6.4 Symbol Name Changes
The linker defines special symbols that can be referred to in the linker command file or in source code.
Some symbols used by COFF ABI were renamed for EABI. A complete list of special symbols supported
by the COFF ABI can be found in Appendix B with the corresponding EABI name.

SPRAB90-January 2010 The TMS320C6000 EABI Migration Guide 17

Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAB90

13 TEXAS
INSTRUMENTS

www.ti.com

Appendix A C6x EABI Sections

New C6x EABI sections in Figure 1 and Table 2 are in blue.

Figure 1. C6x EABI Sections

Read-Only (RO) Sections
text text Code
ROM -switch .switch Switch tables
-const .const Far const data
-cinit .cinit Boot-time init tables
DP > DP-relative Read-Write (RW) Sections
.neardata s
.neardata Near RW data (initialized)
RAM .rodata dat N t dat
.rodata ear const aata
(near)
.bss
.bss Near RW data
(uninitialized)
Absolute Read-Write (RW) Sections
fardata s
fardata Far RW data (initialized)
far
RAM far Far RW data
(far) stack (uninitialized)
.stack Program stack
.sysmem
.sysmem Dynamic data (heap)
Table 2. Other C6000 EABI Sections
Section Access Description
.init_array RO data Pre-main constructors (was .pinit)
.name.load RO data Compressed image of section name
.c6xabi.exidx RO data Index table for exception handling
.céx.extab RO data Unwinding instructions for exception handling
.binit RO data Boot-time copy tables
.cio RW data Handshaking buffer for host-based stdio
.args RW data Command arguments for host-based loader
.ppinfo RW data Correlation tables for compiler-based profiling
.ppdata RW data Data tables for compiler-based profiling
18 The TMS320C6000 EABI Migration Guide SPRAB90-January 2010

Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAB90

13 TEXAS
INSTRUMENTS

www.ti.com

Appendix B Special Symbols

COFF ABI and EABI define special symbols for management of ABI functionality. Some variables were
renamed for EABI. The COFF ABI name is the name as it would appear in assembly code or the linker

command file. The special symbols are listed below:

Table 3. Special Symbols

COFF ABI Name EABI Name Purpose

___binit__ or binit deprecated Boot-time initialization

__cargs__ _cargs__ Command-line arguments
___cinit__ or cinit __TI_CINIT_Base® Start of C global variable initializers
__ data__ deprecated Beginning of the .data section
__edata__ -- End of the .data section

__end__ -- End of the .bss section

_etext -- End of the .text section

___pinit__ or pinit __TI_INITARRAY_BASE® Start of C++ global object initializers

text__ or .text

Beginning of the .text section

__bss__ .bss or $bss

__TI_STATIC_BASE

Start of DP-relative data

__ STACK_SIZE __TI_STACK_SIZE Size available for function frame stack
_ _SYSMEM_SIZE __TI_SYSMEM_SIZE Size available for heap allocation
C$SEXIT C$SEXIT Special host I/O trap

C$310%$ C$310%$ Special host 1/0 trap

__STACK_END __TI_STACK_END End of the .stack section

@ While in COFF ABI .pinit and .cinit are NULL-terminated, in EABI ending addresses of .init_array and
.Cinit are indicated by the corresponding LIMIT symbol.

For more information about the format of .init_array and .cinit, see the TMS320C6000 Optimizing C

Compiler User’s Guide and The C6000 Embedded Application Binary Interface Application Report.

SPRAB90-January 2010
Submit Documentation Feedback

The TMS320C6000 EABI Migration Guide

Copyright © 2010, Texas Instruments Incorporated

19

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAB90

13 TEXAS
INSTRUMENTS

www.ti.com

Appendix C Helper Functions

The compiler_helper_functions_coff to_eabi.i file translates the mangled names of COFF compiler helper
functions into the EABI equivalents. The file is intended to be included in an assembly file that was
originally generated by the compiler, and may have calls to compiler helper functions. It would be better if
the file were recompiled from the C or C++ source for EABI, but if there have been hand tweaks to the
assembly code, that may not be possible.

The compiler_helper_functions_coff_to_eabi.i file may be preincluded by using the --include_file option:
cl 6x --include_fil e=conpiler_hel per_functions_coff_to_eabi.i

Example 6. COFF Helper Functions to EABI Equivalents File

. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg
. asg

__c6xabi _call _stub, __call_stub
__c6xabi _call _stub, __call _stub
__c6xabi _push_rts, _ push_rts

__c6xabi _pop_rts, _ pop_rts
__c6xabi _strasgi _64plus, __strasgi_64pl us
__c6xabi _strasgi, _ strasgi
__c6xabi _abort_nsg, __abort_nsg
__cbxabi _divi, _ divi

__c6xabi _divu, __divu

__c6xabi _divul, _ divul

__c6xabi _divli, __divli

__c6xabi _divull, _ divull
__c6xabi _divlli, __divlli
__c6xabi _divd, __divd

__c6xabi _divf, __divf

__cb6xabi _negll, _ negll

__c6xabi _mpyll, __npyll

__c6xabi _npyiill, __npyiill
__c6xabi _mpyuiill, _ nmpyuiill
__c6xabi _rem, __rem

__c6xabi _renu, __renu

__c6xabi _remul, _ remul
__c6xabi _renmul |, __remull
__c6xabi _remi, __renli

__c6xabi _rem i, __remli
__c6xabi _IIshr, _ Ilshr
__c6xabi _Ilshru, __Ilshru
__c6xabi _IIshl, __Ilshl

__c6xabi _isfinite, __isfinite
__c6xabi _isfinitef, __isfinitef
__c6xabi _isinf, __isinf
__c6xabi _isinff, __isinff
__c6xabi _isnan, __isnan
__c6xabi _isnanf, __isnanf
__c6xabi _isnormal, __isnormal
__c6xabi _isnormal f, __isnormalf

__c6xabi _fpclassify, __fpclassify
__c6xabi _fpclassifyf, _ fpclassifyf

__c6xabi _nround,
__c6xabi _roundf,
__c6xabi _roundl,
__c6xabi _trunc,

__c6xabi _truncf,
__c6xabi _truncl,
__c6xabi _fixdi,

__cbxabi _fixdli,
__c6xabi _fixdlli
__c6xabi _fixdlu,
__c6xabi _fi xdu,

__c6xabi _fixdul,
__c6xabi _fixdull
__cbxabi _fixfi,

__c6xabi _fixfli,
__c6xabi _fixflli
__c6xabi _fixfu,

__nround
__roundf
__roundl
__trunc
__truncf
__truncl
__fixdi
_ fixdli
, __fixdlli
_ fixdlu
_ fixdu
__fixdul
, __fixdull
_ fixfi
__fixfli
. fixflli
_ fixfu

20 The TMS320C6000 EABI Migration Guide

Copyright © 2010, Texas Instruments Incorporated

SPRAB90-January 2010
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAB90

13 TEXAS
INSTRUMENTS

www.ti.com Appendix C

Example 6. COFF Helper Functions to EABI Equivalents File (continued)

.asg __cé6xabi _fixful, _ fixfu
.asg __cé6xabi _fixfull, __fixful
.asg __cé6xabi _fltid, __fltid
.asg __co6xabi _fltif, _ fltif

.asg __cé6xabi _fltlid, __fltlid

.asg __co6xabi _fltlif, _ fltlif

.asg __cé6xabi _fltllid, __fltllid

.asg __co6xabi _fltllif, __fltllif

.asg __c6xabi _fltud, __fltud

.asg __cé6xabi _fltuf, _ fltuf

.asg __cé6xabi _fltuld, __fltuld

.asg __co6xabi _fltulf, _ fltulf

.asg __cé6xabi _fltulld, __fltulld

.asg __co6xabi _fltullf, __fltullf

.asg __c6xabi _cvtdf, _ cvtdf

.asg __c6xabi _cvtfd, _ _cvtfd

.asg __cb6xabi _cnmpd, __ cnpd

.asg __cé6xabi _cnmpf, __cnpf

.asg __cb6xabi _eqld, __eqld

.asg __co6xabi _eqlf, __eqlf

.asg __cb6xabi _geqd, _ geqd

.asg __co6xabi _geqf, __geqf

.asg __cb6xabi _gtrd, _ gtrd

.asg __co6xabi _gtrf, _ gtrf

.asg __c6xabi _leqd, __leqd

.asg __co6xabi _leqgf, _ |eqf

.asg __cb6xabi _Issd, _ Issd

.asg __co6xabi _Issf, _ |ssf

.asg __c6xabi _neqd, __neqd

.asg __c6xabi _neqf, _ neqf

.asg __cb6xabi _absd, __absd

.asg __cb6xabi _absf, __ absf

.asg __cb6xabi _addd, __addd

.asg __c6xabi _addf, __ addf

.asg __cb6xabi _npyd, _ npyd

.asg __co6xabi _npyf, _ mpyf

.asg __c6xabi _negd, __negd

.asg __c6xabi _negf, _ negf

.asg __cb6xabi _subd, _ subd

.asg __c6xabi _subf, __ subf
SPRAB90-January 2010 The TMS320C6000 EABI Migration Guide 21

Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAB90

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard
warranty. Testing and other quality control techniques are used to the extent Tl deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other Tl intellectual property right relating to any combination, machine, or process in which Tl products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. Tl is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not
responsible or liable for any such statements.

Tl products are not authorized for use in safety-critical applications (such as life support) where a failure of the Tl product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of Tl products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in
such safety-critical applications.

Tl products are neither designed nor intended for use in military/aerospace applications or environments unless the Tl products are
specifically designated by Tl as military-grade or "enhanced plastic." Only products designated by Tl as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of Tl products which Tl has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Tl products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are
designated by Tl as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers pmplifier.ti.com Audio [vww.1r.com/audid

Data Converters Automotive [vww Tr.com/automofiv
DLP® Products [vww .dIp.comn] Broadband [pww i.com/broadband
DSP Fspicom Digital Control [pww ir-com/digitalcontrol
Clocks and Timers [yww Ti.com/cloc Medical [pww Ti.com/medical
Interface [nferfacedico Military [pww ir-com/military
Logic [oaicTiconi Optical Networking [xww Ti.com/opficalnetwor
Power Mgmt powerfr.com Security vww Tr.com/securt
Microcontrollers nicrocontroller.fi.conj Telephony lvww.tr.com/telephony
RFID [wWwiiirfid-co Video & Imaging [pww i-com/vided

RF/IF and ZigBee® Solutions | {r.com/prl Wireless [vww fi.com/wirelesy

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/broadband
http://dsp.ti.com
http://www.ti.com/digitalcontrol
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/military
http://logic.ti.com
http://www.ti.com/opticalnetwork
http://power.ti.com
http://www.ti.com/security
http://microcontroller.ti.com
http://www.ti.com/telephony
http://www.ti-rfid.com
http://www.ti.com/video
http://www.ti.com/lprf
http://www.ti.com/wireless

	The TMS320C6000 EABI Migration Guide
	1 The C6000 EABI
	2 Migration Strategy
	2.1 Will COFF Support Be Eliminated?
	2.2 Should an Existing COFF Program Be Converted to ELF?
	2.3 Distribute Libraries in Both COFF and ELF Formats
	2.4 Supporting Both COFF and ELF
	2.4.1 Predefined Symbol: __TI_EABI__
	2.4.2 Dealing With COFF-Only Object Libraries

	3 C and C++ Implementation-Defined Language Changes
	3.1 The long int Type is 32 Bits
	3.1.1 No Native 40-Bit Integer Type
	3.1.2 Examine the Intent of Each Declaration and Expression Involving Type long
	3.1.3 Use Cases for Declarations Involving long
	3.1.4 No 40-Bit Intrinsics
	3.1.5 C Declarations of Assembly Functions Involving long int
	3.1.6 Backwards Compatibility: --long_precision_bits

	3.2 Bit-Field Layout
	3.2.1 C and C++ Standard Requirements for Bit-Fields
	3.2.2 EABI Layout Scheme
	3.2.3 COFF ABI Layout Scheme
	3.2.4 Compatibility Impact of EABI
	3.2.5 Access Type

	3.3 Enumerated type size
	3.4 asm() Statements

	4 Assembly Code Changes (C and C++ ABI Changes)
	4.1 COFF Underscore Name Mangling
	4.2 Removing the COFF Underscore
	4.2.1 Conditional Redefinition Method
	4.2.2 Double Label Method
	4.2.3 Preprocessor Redefinition Method
	4.2.4 Backward Compatibility: --strip_coff_underscore

	4.3 C++ Name Mangling
	4.4 Structures Passed or Returned By Value
	4.5 Legacy .cinit in Assembly Source
	4.6 Legacy STABS Directives in Assembly Source
	4.7 DP-Relative Data Pointers
	4.8 Run-Time-Support Library Helper Functions

	5 Linker Command File Changes
	5.1 EABI Sections
	5.1.1 DP-relative Data Sections
	5.1.2 Read-Only Sections
	5.1.3 Read-Write Sections

	5.2 No Leading Underscores
	5.3 Conditional Linking On by Default

	6 Miscellaneous
	6.1 Relocation Expressions Are Not Supported
	6.2 Partial Linking
	6.3 –symdebug:coff and –symdebug:profile_coff Are Not Supported
	6.4 Symbol Name Changes

	Appendix A C6x EABI Sections
	Appendix B Special Symbols
	Appendix C Helper Functions

