
AIF2 Low-level Driver

User’s Guide

Applies to Product Release: 01.01.00.01:

Publication Date: January, 2014

Document License

This work is licensed under the Creative Commons Attribution-NoDerivs 3.0 Unported

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nd/3.0/ or send a letter to Creative

Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Contributors to this document

Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/

Texas Instruments, Incorporated

821 avenue Jack Kilby

06270 Villeneuve-Loubet Cedex,

FRANCE

Contents
1. About AIF2 LLD .. 5

1.1 Benefits ... 5

1.2 Features .. 6

2. Software overview .. 6

2.1 Using AIF2 LLD for Wcdma traffic ... 7

2.2 Using AIF2 LLD for LTE traffic .. 7

2.3 Using AIF2 LLD for dual mode traffic .. 7

2.4 Using AIF2 LLD to transfer generic packets .. 8

2.5 Using AIF2 LLD for CPRI fast c&m traffic ... 8

3. Programming guidelines ... 8

3.1 AIF2 LLD high-level configuration ... 8

3.1.1 AIF_ConfigObj data structure ... 8

3.2 AIF2 LLD Link configuration ... 10

3.2.1 Antenna carrier configuration .. 11

3.2.2 CPRI flexible antenna carrier packing (LTE only) ... 11

3.3 AIF2 physical Timings parameters .. 12

3.3.1 Pi value .. 12

3.3.2 Using link retransmission (RT) ... 13

3.4 DIO engines ... 15

3.4.1 Ingress and Egress parameters ... 15

3.4.2 DIO to RAC operation .. 16

3.4.3 TAC to DIO operation .. 17

3.4.4 LLD setting DIO .. 18

3.4.5 LLD restriction ... 18

3.4.6 DIO duplicate ingress traffic on DIO 2 ... 18

3.5 PKTDMA channels ... 19

3.5.1 Memory region ... 19

3.5.2 Antenna carriers .. 20

3.5.3 Pushing and recycling packets .. 22

3.5.4 CPRI Fast C&M control words ... 22

3.6 Physical and Radio timers ... 23

3.6.1 Using pre-defined AT events and counters ... 23

3.6.2 Adding application-specific AT events .. 24

3.6.3 Triggering physical and radio timers ... 25

3.7 AIF2 exceptions ... 25

4. AIF2 hardware initialization .. 26

4.1 Sequence of AIF2 LLD calls at start-up .. 26

4.2 AT event programming at run-time .. 31

4.3 Re-initialization ... 31

5. AIF2 LLD testing ... 31

6. AIF2 LLD example configuration: .. 31

6.1 testAIF2_Wcdma4x ... 31

1. General parameters: ... 31

2. Configuration DIO and data buffers: ... 31

3. DL configuration: ... 31

4. UL configuration: ... 33

6.2 testAIF2_cpriWcdmaCheckRF ... 35

5. General parameters: ... 35

6. Configuration DIO and data buffers: ... 35

6.3 testAIF2_cpriRAC .. 37

6.4 testAIF2_cpriDlLte ... 37

6.4.1 Memory configuration .. 37

7. Software implementation of CPRI FastCM over AIF2 ... 38

7.1 Introduction .. 38

7.2 Software workaround implementation .. 39

7.2.1 AIF2 configuration in Null delimiter mode .. 40

7.2.2 TX 4B 5B encoder .. 40

7.2.3 RX 5B 4B Decoder.. 42

User’s guide

AIF2 LLD version 01.01.00.01

This document describes how to use the Antenna Interface Low Level Driver.

1. About AIF2 LLD
The AIF2 low-level driver is meant to be used by drivers and application that interfaces with AIF2, QMSS

and CPPI IPs. This AIF2 low-level driver aims at generalizing the configuration of AIF2 for different

modes (CPRI/OBSAI/Generic packet, WCDMA/LTE/Dual mode). It should be noted that AIF2 LLD support

a single instance of the driver run from only one of the KeyStone-I or KeyStone-II SOC DSP cores. An AIF2

LLD test example showing how to use a single LLD instance across multiple cores is provided in the AIF2

LLD package.

The first goal of the AIF2 LLD is to provide customers with a “functional layer” or an abstraction of the

AIF2 configuration complexity. That means that within a short amount of configuration parameters / API

calls, the end user can configure AIF2 for a specific high level scenario. Enough flexibility has been put in

the LLD at this point to achieve that goal. The current LLD implementation actually doesn’t prevent the

end user from overriding the “pre-defined” parameters. APIs have been split in such a way that first the

CSL high level structure (CSL_Aif2Setup) gets populated (AIF_initHw):

// initialization function for the AIF2 H/W CSL structure (can still be overridden afterwards)

 AIF_initHw(&aifObj);

And then the CSL configuration to AIF2 HW registers in a separate API call. That means aifObj.hAif2Setup

can still be altered in between with the “end user” very specific needs:

 AIF_startHw(&aifObj);

1.1 Benefits
The idea of providing a low level driver is to abstract the programming complexity of AIF2 IP while still

allowing the drivers and applications to control every aspect of AIF2.

Debug options and tools within AIF2 LLD and its utilities are provided to ease debug this IP on target and

help the AIF2 end user application. To name some of these, AIF2 LLD includes:

- AIF2 HW exceptions: LLD has a set of APIs to enable/gather/print exceptions

- AIF2 DIO replicate on dio_2: LLD can duplicate DIO traffic on 2 different engines. This helps

when customer want to debug antenna data carried to the RAC accelerators

- AIF2 CSL dumper: it is created from a perl script that generates a C file given a pointer to a CSL

structure (note this is not specific to AIF2). So within AIF2 LLD utilities, the end user can dump

from the high level CSL structure (CSL_Aif2Setup) all structure fields. This gives an output file

that turns out to be very useful to compare AIF2 configurations between a working and non-

working use case.

1.2 Features
AIF2 LLD feature set is evolving over time. WCDMA, LTE FDD and Generic packet, mainly in CPRI mode, have

been the primary features of initial releases. Since then, the AIF2 LLD has added support for LTE/WCDMA

simultaneous dual mode, LTE TDD, and OBSAI protocol (WCDMA/LTE).

2. Software overview
The AIF2 LLD main data structures contain the properties of the AIF2 hardware entities that are of

interest for an application that aims at programming AIF2 with high-level parameters, or parameters

that are significant enough for a user application. For a wireless base station application that makes use

of the KeyStone-I / KeyStone-II wireless-dedicated accelerators and implements high channel density

and data throughput, the AIF2 LLD implements enough flexibility and scales over all AIF2 hardware

resources in the following way:

AIF_ConfigObj

[protocol, mode]

 Link

Config

 Dio

Config

PktDma

Config

AIF HW

CSL

QMSS HW

QMSS LLD

AIF HW

PKTDMA

CPPI LLD

DSP memory

CSL

RAC HW

RACFL

TAC HW

TACFL

FFTC HW

FFTC LLD

DIO ENG HW

CSL

2.1 Using AIF2 LLD for Wcdma traffic
The AIF2 LLD supports setting a WCDMA communication between DSP and radio equipment via multiple

high-speed SerDes links. They are two industry communication protocols that can be used in this

application: OBSAI and CPRI. The AIF2 LLD supports both Uplink and Downlink for direct connection to

RAC and TAC, and can be configured to use one or multiple links. AIF2 LLD initially supports the following

link rates: {4x,8x}.

AIF2 was designed to use up to 3 DIO engines for WCDMA traffic. For each enabled link, the end user

associates one of the DIO engines. The DIO engines essentially work with circular buffers of antenna

samples, and act as masters on the SoC interconnect, allowing seamless connections with Wcdma TAC

and RAC chip-rate accelerators, and also the DSP memory subsystem, including local, shared, and DDR

memories. AIF2 LLD allows end user to specify the placement and depth of the circular buffers

associated to each of the DIO engines.

AIF2 LLD also supports daisy chain topologies, by implementing proper timing on these links that make

use of the AIF2 re-transmission feature.

2.2 Using AIF2 LLD for LTE traffic
The AIF2 LLD works together with CPPI and QMSS LLDs to support the transport of LTE antenna samples

between the radio equipment and the KeyStone FFTC accelerators. AIF2 HW was designed to work well

with KeyStone PKTDMA and Queue Manager for that purpose. The AIF2 LLD can configure 5, 10 and 20

MHz LTE traffic.

The AIF2 LLD offers a flexible configuration of hardware queues and packet dma channels/receive flows

for each enabled antenna carrier across all links. This allows the end user to have full control about the

application architecture around outgoing/incoming LTE symbol packets.

For LTE TDD, AIF2 LLD defines the different UL-DL configurations as well as the different special

subframe configurations.

2.3 Using AIF2 LLD for dual mode traffic
As stated above here, AIF2 is designed to support WCDMA antenna traffic by using DIO engines, which

can interface directly with RAC and TAC, and to support LTE antenna traffic by using PKTDMA, which can

interface with FFTC directly. An important point is that AIF2 DIO mode and PKTDMA mode cannot co-

exist. The solution chosen to support dual mode (simultaneous antenna traffic of WCDMA and LTE) is to

use DIO to support both LTE and WCDMA.

Using the DIO approach for both modes, it is still possible to have zero CPU intervention to connect AIF2

and FFTC for the LTE antenna traffic. On ingress side, since antenna data placement is regular in DIO

circular buffers, packet descriptors can be pre-configured to point to the corresponding position for

each symbol. EDMA is then used to pop the pre-arranged descriptor from the queue and push it to the

input queue of FFTC to achieve zero CPU intervention. On egress side, Rx/output free descriptor queue

of FFTC can be arranged to have the descriptors pointing to the buffers that matches the DIO data

placement.

2.4 Using AIF2 LLD to transfer generic packets
The AIF2 has a special mode called generic packet for inter-device communication. It allows using AIF2

to transfer generic digital packets between DSPs or between a DSP and a FPGA. They are two

standardized communication protocols that can be used in this mode: OBSAI and CPRI. The AIF2 LLD

supports only 16-bit data width.

Packet mode does not require time synchronization. As opposed to IQ data antenna traffic, Packet mode

allows the user to send data packets asynchronously. Generic data can be transferred over control

message slot (for OBSAI) or control words (for CPRI) in parallel with antenna stream. If one link is not

used for antenna stream, generic data can also be transferred over AxC (Antenna stream Carrier) slots.

Generic packet mechanism is commonly used to group multiple words or messages together to form

larger packets, or to utilize unused bandwidth of the link.

OBSAI support generic message in nature. To support generic data transfer, CPRI need additional

delimiter, 4B/5B or NULL delimiter can be used for generic data over control words, since 4B/5B

introduce more overhead, so NULL delimiter can be used for generic data over control words. But for

generic data over AxC slots in CPRI mode, 4B/5B must be used.

2.5 Using AIF2 LLD for CPRI fast c&m traffic
In CPRI mode, AIF2 supports Fast Ethernet with 4B/5B encoding over the control words. 4B/5B encoding

occurs on top of the SerDes 8B/10B encoding. Ethernet frame format is defined as part of IEEE 802.3.

However, it should be noted that 4B/5B encoding follows the big endian convention and transmits the

MSB of the second nibble first, which can cause issue with some radio equipment. For details, please

check KeyStone-I and KeyStone-II errata advisories. One of the workaround for this limitation is to use

Null delimiter option instead for 4B/5B encoding.

AIF2 LLD supports both Null delimiter and 4B/5B encoding options to allow the implementation of the

software workarounds presented in the Advisory list. The fast c&m example of AIF2 LLD implements the

software workarounds mentioned in the errata usage notes “AIF2 CPRI FastC&M Restrictions and Usage

Note”.

3. Programming guidelines

3.1 AIF2 LLD high-level configuration

3.1.1 AIF_ConfigObj data structure

The AIF2 LLD uses a structure called AIF_ConfigObj. It exposes high level parameters to allow users to

configure AIF2 with a general understanding of how AIF2 HW works. The user has to fill in AIF_ConfigObj

fields such as the type of antenna traffic, the number of links, the protocol, the data width, the DMA

mode etc…

AIF2 LLD is then in charge of translating these parameters into AIF2 CSL parameters, and then call the

appropriate CSL APIs to set AIF2 registers. AIF2 configuration examples are provided in the test

examples delivered with the LLD (aif2/test folder).

The high-level or global parameters

These are the parameters that are global for the system such as:

 The AIF2 SerDes input clock

 The operating mode (WCDMA, LTE FDD, LTE TDD, DUAL MODE, GENERIC PACKET…)

 The DMA mode (PKTDma or DIO engine)

 The radio interface protocol (OBSAI, CPRI)

 The AIF2 timer synchronization source (external, software)

Examples of configuration for general parameters:

WCDMA test case

Mode: WCDMA

Clock speed: Pick one that fits the Hardware specification

Protocol: For WCDMA, the LLD supports both CPRI and OBSAI protocol

DMA: For WCDMA, the LLD makes use of DIO engine mode

SyncSource: AIF2 LLD support software sync or external rad/phy sync.

LTE test case

Mode: LTE (TDD or FDD)

Clock speed: Pick one that fits the Hardware specification

Protocol: For LTE, the LLD supports both CPRI and OBSAI protocol

DMA: For LTE, the LLD makes use of the PktDMA mode

SyncSource: AIF2 LLD support software sync or external rad/phy sync.

DUAL MODE test case

Mode: DUAL MODE

Clock speed: Pick one that fits the Hardware specification

Protocol: For DUAL MODE, the LLD supports CPRI only for the moment

DMA: For DUAL MODE, the LLD makes use of the DIO mode

SyncSource: AIF2 LLD support software sync or external rad/phy sync.

GENERIC PACKET test case

Mode: GENERIC PACKET

Clock speed: Pick one that fits the Hardware specification

Protocol: For GP, the LLD supports both CPRI and OBSAI protocol

DMA: For GP, the LLD makes use of the PktDMA mode

SyncSource: AIF2 LLD support software sync or external rad/phy sync.

3.2 AIF2 LLD Link configuration
As part of the high-level parameters, the AIF_ConfigObj data structure contains specific structures, such
as 6*AIF_LinkConfigObj, which holds the configuration structure for each antenna link.

AIF2 hardware supports the following features:

- 6 antenna links
- 6 GHz SerDes
- Independent Link rate per link – (exception is CPRI 5x rate, all or none)
- 64 max AxC per link (for WCDMA)
- 8 max AxC per link (for LTE)

The AIF2 LLD link setup structure contains most configurable settings for a given link. The AIF2 LLD
supports both 4x and 8x link rates. 2x and 5x are not supported at this stage. Most test cases available as
part of the LLD deliveries are 4x link rate tests. It is mandatory for the user to properly set each link
parameters for all the enabled links:

- the sample rate

- the data type and width for outbound traffic

- the data type and width for inbound traffic

- the selected dio engine (in case of WCDMA or DUAL MODE)

- the number of AxC for the Tx side (Pe)

 If not filled it will automatically set to the maximum value in AIF_calcParameters()

- the number of AxC for the Rx side (Pd)

 if not filled it will automatically set to the maximum value AIF_calcParameters()

- For DUAL MODE, the selected link mode to use (LTE, WCDMA)

- For LTE TDD, the selected UL-DL and Special Subframe configurations

Examples of link configuration:

Link
rate

outbound data
type

outbound data
width

inbound data
type

inbound data
width

dio
engine mode

WCDMA 4x UL 8 bits DL 16 bits Dio 0 NA

LTE 4x UL 15 bits DL 15 bits NA NA

DUAL MODE
(Wcdma link) 4x UL 8bits DL 16 bits Dio 0 WCDMA

DUAL MODE
(Lte Link) 4x UL 15 bits DL 15 bits Dio 1 LTE

Those parameters are the mandatory ones for each application using the AIF2 LLD.

 In the case of retransmission, the user will need to pass extra parameters in the link configuration data

structure, such as timing and position in the daisy chain topology. For this matter, please go to 3.3.2

3.2.1 Antenna carrier configuration

As a default behavior of AIF2 LLD, AIF_ calcParameters() sets the link configuration for the maximum

termination of AxCs per link based on the link rate:

 WCDMA LTE GEN PKT DUAL MODE

 OBSAI CPRI both both
CPRI
WCDMA CPRI LTE

4x 16 15 2 1 16 2

8x 32 30 4 1 32 4

Still, it is possible to alter the AIF2 LLD link configuration and use fewer AxCs per link, or even no AxC at

all for a given link (in case of retransmission (RT) for instance).

 numPeAxC

The PE refers to the AIF2 protocol encoder on egress side. This parameter indicates how many AxCs

are enabled on a given link. If it’s set to 0, then the PE won’t generate any IQ samples for that

particular antenna link: in RT mode, no PE operation is needed.

 numPdAxC

The PD refers to the AIF2 protocol decoder on ingress side. numPdAxC corresponds to the number

of AxC being terminated on a particular node in the antenna daisy chain. So it is possible to choose

to handle a subset of the total number of AxCs transported by ingress links. If it’s set to 0, then the

PD won’t receive any IQ samples for that particular antenna link: in RT mode, no PE operation is

needed. For loopback validation purposes, numPdAxC <= numPeAxC

 firstPdAxC

This parameter allows to terminate numPdAxC carriers starting from the firstPdAxC one. By default,

it is set to zero to handle link carriers starting from the first one. But, for instance, if only the last 3

AxCs are needed among all the carriers on a given link, numPdAxC can be set to 3 and firstPdAxC to

12 in the case of a link configured for WCDMA CPRI 4x.

3.2.2 CPRI flexible antenna carrier packing (LTE only)

In order to support different combinations of AxC packing in CPRI, the AIF2 LLD link configuration holds a

field named cpriPackMode that allows the user to pick one of these configurations:

 LTE bandwidths cpriPackMode

All AIF2_LTE_CPRI_1b1

LTE 20 MHz AIF2_LTE_CPRI_8b8

LTE 10 MHz AIF2_LTE_CPRI_4b4

LTE 5 MHz AIF2_LTE_CPRI_2b2

As examples:

- LTE FDD 20 MHz test case, AIF2_LTE_CPRI_8b8 format looks like:{Control, AxC0, AxC0, AxC0,
AxC0, AxC0, AxC0, AxC0, AxC0, AxC1, AxC1, AxC1, AxC1, AxC1, AxC1, AxC1, AxC1}

- LTE FDD 20 MHz test case, AIF2_LTE_CPRI_8b8 format looks like: {Control, AxC0, AxC1,
AxC0, AxC1, AxC0, AxC1, AxC0, AxC1, AxC0, AxC1, AxC0, AxC1, AxC0, AxC1, AxC0, AxC1}

It shall be noted that if using a format different than AIF2_LTE_CPRI_1b1, the user has to pay attention
to C6670 advisory “AIF2 CPRI LTE Ingress Antenna Carrier Packing Issue” for silicon revision <= 1.0.

3.3 AIF2 physical Timings parameters
Within the AIF2, there are some internal delays in both egress and ingress directions. The AIF2 LLD

allows the user to only specify delayTx and delayRx reference timing parameters and, in turn, configure

all other internal delays automatically. If those 2 parameters are set to 0, AIF2 LLD will use default

parameters that work with most KeyStone-I and KeyStone-II evaluation boards (TI EVM), based on

pe2Offset base value. These timings are computed using the AIF_calcParameters() function.

Here are the default values for this offset.

pe2Offset WCDMA LTE

OBSAI 610 310

CPRI 490 310

The AIF2 LLD programs the internal delay using the following formulas. All these parameters are

expressed in byte clocks (80 for OBSAI and 64 for CPRI):

if (delayRx==0) delayRx= pe2Offset (default for TI EVM);

if (delayTx==0) delayTx= pe2Offset (default for TI EVM);

PE1Offset = pe2Offset - 10;

if(CSL_AIF2_LINK_PROTOCOL_OBSAI==hAif->protocol)

deltaOffset = delayTx + 60 + 80 * nodeTx;

piMin = delayRx + 60 + 80 * nodeRx;

if(CSL_AIF2_LINK_PROTOCOL_CPRI==hAif->protocol)

deltaOffset = delayTx + 60 + 64 * nodeTx;

piMin = delayRx + 60 + 64 * nodeRx;

piMax = piMin + 100;

3.3.1 Pi value

If AIF2 is connected with an external device such as a radio head or a CPRI relay solution, an adjustment

of Pi value for ingress traffic may be needed, as this external equipment should include a new delay. Pi

corresponds to the delay from the physical frame boundary to the actual start of the master frame

boundary on the ingress side. It may then include the delay of the RF chain in some cases.

To adjust Pi value on a given system, AIF2 HW features a Pi capture mechanism in its receive mac

module (RM) and these captured values can be read from the AT Pi Captured Value Register for a given

link.

3.3.2 Using link retransmission (RT)

The link retransmission is handled some specific settings for the link configuration. When doing

retransmission on a given link, the modules PD, PE, DIO and DB are not exercised. That means that no

AxC will be associated with this link and these modules can be disabled if no other AxC is terminated at

that node in the daisy chain.

 They are two aspects to consider for the programming of retransmission: the RT module itself, and the

specific AIF2 timing for the link.

For the RT module setting part, AIF2 LLD exposes the following two parameters:

 RtEnabled

Enables link retransmission. Default value is null.

 RtLinkRout
Selects the destination link of the retransmission.

To deal with retransmission timings, AIF2 LLD is making use of the Tx/Rx node position in the antenna

daisy chain. Here is a definition of those 2 parameters:

 nodeTx

This parameter allows setting the Delta offset on the given link as described in 3.3

A retransmission introduces a delay of ~1 Wcdma chip time. That means 80 byte clock for OBSAI and

64 byte clock for CPRI. The nodeTx parameter allows inserting a certain delay based on the place of

the current KeyStone SoC in the daisy chain. For a direct communication between two devices, the

nodeTx value needs to be set to ‘0’. For the 1st retransmission node, set it to 1, and so on.

 nodeRx

This parameter allows setting the piMin value on the given link as described in 3.3.

A retransmission introduces a delay of ~1 Wcdma chip time. That means 80 byte clock for OBSAI and

64 byte clock for CPRI. The nodeRx parameter allows inserting a certain delay based on the place of

the current KeyStone SoC in the daisy chain. For a direct communication between two devices, the

nodeTx value needs to be set to ‘0’. For the 1st retransmission node, set it to 1, and so on.

Figure 1: Pi and Delta Timing example

Delta offset is used for transmission, and Pi for reception. So for a communication between 2

devices, the Delta of the one who transmit the data should be aligned with the Pi of the receive one.

Example:

 Basic retransmission with link 0 and 2 DSPs:

The purpose here is to send data from DSP 0 over link 0 to DSP 1. The DSP 1’s link 0 is set to be

retransmitting via itself. DSP 0 receive the data via link 0 and then can send it to the RAC or

whatever the application require.

Figure 2: basic RT between 2 devices

In order to realize that setup, the RT parameters have to be set like that:

DSP 0 DSP 1

RtEnabled 0 1

RtLinkRout NA link 0

nodeTx 0 0

nodeRx 1 1

For DSP1, link 0 is the first to send data (nodeTX=0), so the first to receive these data is the DSP 1

(nodeRx=0). Then for the retransmission via link 0 this is the second Transmission (nodeTx=1) and so the

associated reception is the DSP 0’s link 0 (nodeRx = 1).

Note: For pure retransmission, the PD and PE modules can be disabled. It can be done by setting

numPeAxC and numPdAxC to 0 after the call to AIF_calcParameters() function.

3.4 DIO engines
Direct IO (DIO) means that a peripheral has dedicated custom logic that implements data movement (as

opposed to using EDMA or CPU reads/writes). For AIF2, custom circuit is built to handle data movement

requirements unique to WCDMA. AIF2 PKTDMA module is making use of channel number 128 for Direct

IO purposes. That is why, even if DIO mode is used with AIF2 LLD, calls to both AIF_initDio() and

AIF_initPktDma() is required.

As part of the high-level parameters, the AIF_ConfigObj data structure contains specific structures, such
as 3* AIF_DioConfigObj, which holds the configuration structure for each DIO engine.

DIO engines are periodic engines tight to dedicated AIF2 timer events as opposed to PktDMA channels

which are driven by data arrival. The AT module generates internal system events that control the DIO

engine timing. The AIF2 LLD programs these events with the following periodicity:

– Four chips event for TAC/DL

– Eight chips event for RAC/UL

3.4.1 Ingress and Egress parameters

AD register fields Description LLD implementation

num_qw Number of QuadWord per AxC Set one QW for DL, two QW for UL

num_axc Number of AxCs associated with the dio engine
Calculated from the number of link(s)
associated with the DIO engine

dma_base_addr Vbus source or destination base address
in/out circular buffer from AIF_ConfigObj/
AIF_DioConfigObj

dma_burst_ln Maximum dma burst length Default is 4 QW

dma_ch_en DMA channel enable/disable Set if DIO engine is used

rsa_en Data type selection 1 for UL 0 for DL

dma_num_blk
Number of data blocks to transfer before
wrapping back to dma_base_addr

inNumBlock/outNumBlock from
AIF_ConfigObj/ AIF_DioConfigObj

dma_brst_addrs_
stride

DMA burst address stride after each DMA
burst, the DMA address will increment by this
amount

Computed by LLD

dma_blk_addrs_s
tride

DMA block address stride after transferring
each dma block (every event time), the DMA
will increment by this amount

Computed by LLD, set to 0x80 if
usedWithRAC field in AIF_DioConfigObj is
set to match RAC front end format

dbcn0 ~ 63
Match dbcn order to each data buffer channel
number

Computed by LLD

3.4.2 DIO to RAC operation

The ingress DIO provides three DMA engines to control the transfer of data from multiple DB buffers to

each of three destinations: RAC, L2/RSA or DDR3.

RAC example:

Below is an example of how the DIO is programmed for RAC DMA. Trigger period is 8 chips. DIO ingress

is programmed to operate this way if usedWithRAC is set.

As the DMA engine traverses the DBCN LUT, it is grouping data transfers into bursts of 4 Qwords. When

it only has a burst of two left, it will only do a burst of two. The first burst will start at VBUS address of

dma_base_addr. After the first burst, the next burst will start at a VBUS address of dma_base_addr +

dma_brst_addr_stride and so on until the DBCNT has been exhausted. After the next trigger, the DMA

engine traverses the DBCNT again with starting address of dma_base_addr + dma_blck_addr_stride.

The next burst will start at a VBUS address of dma_base_addr + dma_blk_addr_stride +

dma_brst_addr_stride and so on until the DBCNT has been exhausted. The DMA engine will proceed in

this manner until dma_num_blks have been transferred and then start again from the beginning.

3.4.3 TAC to DIO operation

The egress DIO provides three DMA engines to control the transfer of data from each of the three

destinations, TAC, L2/RSA or DDR3 to multiple DB buffers. Precise timing of transfers occurs based on AT

signaling.

TAC example:

See Ingress example.

3.4.4 LLD setting DIO

aifObj.linkConfig[i].dioEngine = (0,1 or 2)

This parameter associates a DIO engine to a given link. Then the mapping between AxC, link and DIO is

made by the LLD.

The basic DIO parameters that have to be set by the user are:

 aifObj.dioConfig[i].out

Buffer start address for this DIO engine for egress.

 aifObj.dioConfig[i].in

Buffer start address for this DIO engine for ingress.

 aifObj.dioConfig[i].outNumBlock

Number of DMA blocks (wrap2) for this DIO engine in egress direction

 aifObj.dioConfig[i].inNumBlock

Number of DMA blocks (wrap2) for this DIO engine in ingress direction

 aifObj.dioConfig[i].usedWithRAC

When in Wcdma mode, tells whether this DIO engine is used for RAC on ingress side

AIF_initDio() function must be called prior to AIF_initHw() to initialize some of the DIO parameters in
AIF2 LLD.

3.4.5 LLD restriction

One DIO engine can handle up to 64 AxC. That means only 4 links (16 AxCs per link) at 4x rate, or 2 links

at 8x (32 AxCs per link) can be assigned to the same DIO engine. This is hardware restriction.

AIF2 LLD adds a new restriction: the links associated to a given DIO have to be contiguous. Valid

configuration example: link[0:1] on engine0, link[2] on engine1, link[3] on engine2 Invalid configuration

example: link[0,2] on engine0, link[1] on engine1, link[3] on engine2 The main motivation for this

restriction is the assignment of the AIF2 DB channels across the multiple links and DIO engines.

3.4.6 DIO duplicate ingress traffic on DIO 2

The principle is to set DIO engine 2 as an image of another (DIO0 or DIO 1) that duplicate data to

another DIO circular buffer on the KeyStone SoC. It could be, for instance, to another RAC, or to some

DSP memory for debug purposes. The same DBs are allocated to both DIO, so the same data pass

through both DIO to two different locations.

 aifObj.dioConfig[i].duplicateOnDioEng2

Set to 1 means that DIO engine 2 is dedicated to debug mode and will copy this current DIO.

AIF2 LLD always use DIO engine 2 to duplicate the current DIO. So if DIO duplicate feature is used the

application cannot use the DIO engine 2 for traffic purpose. Only one DIO can be debugged at a time,

and it can’t be DIO engine 2.

 aifObj.dioConfig[2].in

Set the buffer destination start address for DIO engine 2 .

3.5 PKTDMA channels
Multicore Navigator is a methodology and a series of hardware accelerator modules that allow the DSP

cores and peripherals to effectively transfer packets. It is a safe and managed way that memory can be

used to pass data.

The AIF2 LLD makes use of the QMSS and CPPI LLD to initialize those 2 APIs.

3.5.1 Memory region

The first thing to be done when using the PKTDMA is to defined a memory region (QMSS). This memory

region will store all the descriptor needed by the application. They are 2 important keys that must be

known when creating a memory region:

- First the descriptor number of the memory region must be a power of 2.

- A memory region can support only one buffer size. Meaning that the buffer size must be

chosen in advance to handle the largest possible packet size. Example: for a 20 MHz LTE

application, the buffer must store the largest LTE symbol, that is the first (2208 samples).

This section must be done by the user as it is application specific.

3.5.2 Antenna carriers

The AIF2 LLD provides support to the user in order to set up a PKTDMA transfer via the AIF queues. The

picture below describes what is actually done by the LLD software:

This is a basic AIF flow. The AIF2 LLD will configure this flow if the pktdma structure of the aifObj

structure is set. This structure contains the parameters for the PKTDMA and QMSS setup:

The Ctrl Queues are used for CPRI Fast C&M control words and will be explained later. The AxC Queues

are used for AIF traffic. The AIF2 LLD assumes that for each AxC there is a flow. They are 128 pktdma

channels. The last one is for DIO engine, between 124 and 127 this is used for control words. That let

124 channels for AIF AxC.

The PKTDMA and QMSS need to configure:

- A Cppi Handle
- A Tx free descriptor queue
- A Tx Queue
- A Rx free description queue
- A Rx Queue
- A Tx channel
- A Rx channel
- A Rx Flow.

CPPI:
This is done by software and nothing has to be done by the user.

Tx free descriptor queue:

In order to feed the TxFDQ, there is some information that the user must inform
 aifObj.pktDmaConfig.txRegionAxC[chan] = Qmss_MemRegion_MEMORY_REGION0;

This will set all the descriptor of this queue to be taken from the memory region that has been
previously configured.

 aifObj.pktDmaConfig.txNumDescAxC[chan] = NBSYMBOL*2; // double num of Pkts

Set the numbers of descriptor that is needed to be implementing in the TxFDQ. It should be big
enough so that the application never runs out of descriptors.

 aifObj.pktDmaConfig.txDescSizeAxC[chan] = LTESYMBOLSIZE;

Set the size of the payload that is attached to the descriptor, as it is monolithic descriptors for AIF
PKTDMA. For LTE, set the size of the biggest one (1st symbol).

The queue will be selected by the LLD between all the available generic purpose queue the number will
be store in aifObj.pktDmaConfig.txFqAxC.

Tx Queue:

The Tx Queue is defined by the LLD. It will take the first AIF queue available. There are 128 AIF queues,

from queue 512 to 639. The information regarding the queue numbers will be store in

aifObj.pktDmaConfig.txQAxC.

Rx free descriptor queue:

Unlike the TxFDQ and TxQ, the queue wanted for the RxFDQ must be specified. It is mandatory to
choose a general purpose queue, and an available one. That is a queue from 896 to 8191.
Then it goes the same as for the configuration of TxFDQ:
 aifObj.pktDmaConfig.rxRegionAxC[chan] = Qmss_MemRegion_MEMORY_REGION0;

 aifObj.pktDmaConfig.rxNumDescAxC[chan] = NBSYMBOL*2; // double num of Pkts

 aifObj.pktDmaConfig.rxDescSizeAxC[chan] = LTESYMBOLSIZE*NBCHANNELPERLINK;

For the descriptor size, you must remember that if you are using the super packet workaround, the
receive path will merge the AxC that are transmitted so the descriptor size will be bigger depending
on how many AxC you have per link.

Rx Queue:

The Rx queue is set be the user. You must choose a generic purpose queue among the entire available

one that are from queue 896 to 8191. The LLD will take the number you gave when setting the value of

the associated flow rxFlow[link][AxC].rx_dest_qnum.

Tx, Rx channel:

This is directly set up by the LLD. It will automatically set the channel to match the flow for a given AxC.

Flow:

The flow is the way to make the Tx and Rx queues to exchange data. It matches with the channel
automatically. Left to configure is some information regarding the Rx recycling method and the
destination queue number (RxQ).

 rxFlow[link][AxC].rx_dest_qnum = MONO_RX_Q+chan;

Here you must set the chosen number for the RxQ for the given AxC. This allows the transfer to the
RxQ of the descriptor that is pushed to TxQ.

 rxFlow[link][AxC].rx_fdq0_sz0_qnum = MONO_RX_FDQ+chan;

 rxFlow[link][AxC].rx_fdq1_qnum = MONO_RX_FDQ+chan;

 rxFlow[link][AxC].rx_fdq2_qnum = MONO_RX_FDQ+chan;

 rxFlow[link][AxC].rx_fdq3_qnum = MONO_RX_FDQ+chan;

Configure the RxFDQ in which the descriptor must return after being popping from RxQ.

 rxFlow[link][AxC].rx_desc_type = (Uint8)Cppi_DescType_MONOLITHIC; // MONO
For AIF LTE traffic you must always choose Monolithic descriptor type.

 rxFlow[link][AxC].rx_sop_offset = 12+4;

For monolithic packet the payload is attached to the descriptor so it is mandatory to inform the size
of the Header (12 bytes) + PS (4 bytes). Then the descriptor now that the data is located 16 bytes
after the header.

aifObj.pktDmaConfig.hRxFlowAxC[chan] = &rxFlow[i][idx];
aifObj.pktDmaConfig.hRxFlowCtrl[chan] = NULL;

3.5.3 Pushing and recycling packets

The AIF2 LLD aims at configure the AIF in order to be able to do LTE, WCDMA and Generic packet

transfer. For LTE when using the Multicore Navigator, the application will need to pop and push packet

for both sending packet and recycling the ones that are received. This is not done by the LLD has it

depends on the application. You can still have a look to the examples that are included in this package

who show some transfer that are done at different time base. We add for LTE FDD two AIF events that

will help you push and pop at a sub-frame rate (1 ms) or at a slot rate (0.5 ms):

- Sub-Frame: AIF event 6

- Slot time: AIF event 5

3.5.4 CPRI Fast C&M control words

Users should be aware of the required SW workarounds for CPRI fast c&m restrictions. Concerning the

PKTDMA traffic for fast c&m, it can be considered as asynchronous to the IQ sample traffic, in the sense

that pushing packets on the Tx direction can occur at any time. The AIF2 LLD configures CPRI control

stream #0 as the fast c&m one. On reception of fast c&m packets, the application pops the packet

descriptor from the associate CPRI control stream #0. Dedicated structure fields (Tx control queue, Rx

control queue, …) for CPRi control streams are available for configuring and using Cpri fast c&m

functionality in aifObj.pktDmaConfig.

3.6 Physical and Radio timers

3.6.1 Using pre-defined AT events and counters

AIF LLD provides pre-configured events to help the user pace its application. Depending on the chosen

standard, the pre-defined AT events are set accordingly.

General Event: Available for all the configuration

AT event 7: this event is dedicated to generate the 10 ms frame boundary. This event goes for every

application.

This is one of the most important counters as it gives a timing reference. For WCDMA, we use this

counter to stop the application after the desired amount of time spent.

AIF2LLD implement a counter base on that timer, named “aifFsyncEventCount[1]”. It counts the number

of frame that has been sent since the start of the AIF.

WCDMA event

AT event 8: event generating a 4 chip trigger for TAC. Event 8 is specified for this purpose.

AT event 9: event generating a 32 chip trigger for RAC_A. Event 9 is specified for this purpose.

AT event 10: event generating 32 chip trigger for RAC_B. Event 10 is specified for this purpose

For KeyStone-II devices only:

AT event 11: event generating 32 chip trigger for RAC_C. Event 10 is specified for this purpose

AT event 12: event generating 32 chip trigger for RAC_D. Event 10 is specified for this purpose

LTE FDD event

AT event 5: event generating a 0.5 ms timeslot. User can use this interruption to pop and push packet to

feed the AIF2 at a slot time basis (7 symbols per slot, which correspond to 7 packets pushed or popped).

AT event 6: event generating a 1 ms sub-frames time. User can use this interruption to pop and push

packet to feed the AIF2 at a slot time basis (14 symbols per slot, which correspond to 14 packets pushed

or popped).

AT event 0: This is the event that trigs the EDMA3 for the Superpacket workaround. For TNyquist

Rev1.0.

LTE TDD event

AT event 5: event generating a 0.5 ms timeslot. User can use this interruption to pop and push packet to

feed the AIF2 at a slot time basis (7 symbols per slot, which correspond to 7 packets pushed or popped).

AT event 6: event generating at the granularity of a symbol. User should use this interruption to pop and

push packet to feed AIF2 at a slot time basis.

DUAL MODE event

AT event 5: event generating a 0.5 ms timeslot. In dual mode, you will need to use this interruption to

recycle

AT event 6: event generating at the granularity of a symbol. User should use this interruption to recycle

the packet made for the re-packetization of LTE traffic and then push it to the FFTC queues.

3.6.2 Adding application-specific AT events

AIFLLD aims at simplifying the ad of AT event for application specific purpose. Just be aware to not

configure an Event that is already used by the LLD, unless changes that implies for the application are

known.

To add an event, first declare a new Aif2AtEvent structure. Then, configure all the parameters based on

the needs:

EventSelect: select the event used for this AT. Remember to use a free one, from 0 to 6.

EventOffset: the AT event will start AT EvtStrobeSel + EventOffset. In order for that to work, set a

value that is inferior at the Event modulo, otherwise it will never trigger.

EvtStrobeSel: The event can be triggered at different source time base that have been configure by

the LLD:

- The CSL_AIF2_RADT_FRAME: basically at a frame boundaries

- CSL_AIF2_RADT_SYMBOL: trigger every symbol time (the shortest available, in case that

strobe is selected the event will trig every symbol, the configuration of modulo is not

needed as the strobesel wrap back the event counter)

- CSL_AIF2_PHYT_FRAME: at the PHY frame boundary if it is different from Radt.

- CSL_AIF2_ULRADT_FRAME: based on UL configuration. By default no recommended.

- CSL_AIF2_DLRADT_FRAME: based on DL configuration. (Not implemented in AIF2LLD).

EventModulo: modulo sets the frequency of the AT event. It is measure in CPRI or OBSAI byte clock. So

for a 4 chip AT event, the correct value is 4*80-1 for OBSAI and 4*64-1 for CPRI.

EventMaskLsb: set 0xFFFFFFFF; this is only for GSM (not supported in AIF2 LLD)

EventMaskMsb: set 0xFFFFFFFF; this is only for GSM (not supported in AIF2 LLD)

Now that the event is configure, call the AIF_addAtEvent(CSL_Aif2AtEvent* hAtEvent) function

between AIF_initHw(&aifObj) and AIF_startHw(&aifObj).

Example:

This example set an AT event that will trig every 256 chip on the event 6, generated from the RADT

clock.

Implement the interruption generated by event 6.
void chipBoundaryIsr_256() {

Application code
}

In the Main:
AIF_initHw(&aifObj);
// add a 256-chip event based on RadioTimer event 6
atEvt6.EventSelect = CSL_AIF2_EVENT_6;
atEvt6.EventOffset = 0;
atEvt6.EvtStrobeSel = CSL_AIF2_RADT_FRAME; // frame strobe select.
atEvt6.EventModulo = (256*64) - 1; // 256-chip modulo expressed in CPRI byte clock
atEvt6.EventMaskLsb = 0xFFFFFFFF;
atEvt6.EventMaskMsb = 0xFFFFFFFF;
AIF_addAtEvent(&atEvt6);
// add user routine on event 6
aif2evt6_userIsr = chipBoundaryIsr_256;
AIF_startHw(&aifObj);

3.6.3 Triggering physical and radio timers

Tbd

3.7 AIF2 exceptions
The AIF2 had a large number of system error/alarm condition signal. The function of the Exception

Interrupt Handler (EE) is to aggregate this large number of errors/alarm condition signals to a number of

interrupts that can be used to generated DSP interrupts.

The AIF2 LLD offers the possibility to enable the AIF2 exception handler. The LLD just trace the most

significant signal of interest, and offers the possibility to watch them as they are reported in the aifObj,

in the AIF_EeCountObj structure.

In order to activate the EE handler, the AIF_enableException(&aifObj) function must be call some frame

after the AIF start its timers. It will then store all the exception spotted in the aifObj if there is a

malfunction, and raising the flag of EE.

Before the reset of the AIF2, the interruption that capture the EE must be disable be calling

UTILS_aif2ExceptIntDisable function, otherwise it may capture some EE that are due to the reset of the

SerDes.

Interruption: TBD

4. AIF2 hardware initialization

4.1 Sequence of AIF2 LLD calls at start-up
Here is the sequence that is expected by AIF2 LLD for proper initialization. Upon the execution of this

sequence, the AIF2 hardware is expecting a frame sync trigger (Software, radsync/physync). The AIF2

LLD test utilities have support for that procedure for both loopback and dual-DSP setups.

First it calculates the timing of the application, then it configures the DIO (disable for LTE, enable with a

certain amount of AxC for WCDMA), after that it initializes the QMSS and CPPI (CW for WCDMA, CW and

channel for LTE and GENERIC PACKET). Finally it sets the AIF2 based on the information above. But it

only sets a pointer on a CSL object, to set the register of the AIF it needs to call the start hardware

function that will configure the AIF2. It is possible to change some register before calling the start

hardware function for special purpose such as adding a new AT event.

AIF_enable()

UTILS_doCleanup();

Start

Config AIF general parameters:
-protocol
-pktdma or Dio engine
-mode (LTE, WCDMA…)
-Sync source
-Superpacket workaround

If

Config DIO parameters in aifObj:
-input buffer
-Output buffer
-Num block

Dio engine

Config PKTDMA parameters in aifObj:
(for both LTE and Fast C&M)

- Tx descriptors header
- Rx descriptors header
- Rx flows

pktdma

UTILS_initTimer()

If Dsp = 1 Yes

UTILS_aifIntcSetup()

No

AIF_calcParameters()

UTILS_initQmss()

Config AIF links parameters:
-link rate
-num AxC Pe and num AxC Pd
-Sample rate
-outbound and inbound data type and width
-ps message enable
-comType (LOOPBACK, AIF2 to AIF2)

If DIO mode = 1

AIF_initDio()

Yes

AIF_initPktDma()

No

AIF_initHw()

AIF_startHw()

Special setup:
If you need some special AIF timing or config,

do it here. (AIF_addAtEvent())

UTILS_triggerFsync()

UTILS_doCleanup();

End

Run time process here such as packet
recycling, push of packets, exception handler,

Data verification...

4.2 AT event programming at run-time
Tbd

4.3 Re-initialization
The AIF2 LLD provides a way to implement a clean-up sequence for the AIF2 Hardware. AIF_resetFsync()

and AIF_resetAif() are Sw-resetting the AIF2 hardware and LLD objects. The AIF2 LLD test utility,

UTILS_doCleanup() implements a full cleanup sequence in the LLD tests. It should be noted though that

for the queue manager sub-system (QMSS), the linking RAM or memory regions cannot be re-configured

without a "System Reset".

5. AIF2 LLD testing
The directory [your path]/aif2/test contains the AIF2 LLD test suite and some CSL utilities. Those can be

used as examples for the LLD user. See the release notes for the exhaustive list of available tests.

6. AIF2 LLD example configuration:
Based on AIF2LLD examples that can be found within the LLD package, the purpose of this chapter is to

describe the configuration that is being made for some of these tests.

6.1 testAIF2_Wcdma4x
This test is a generic test for WCDMA. It allows traffic for CPRI or OBSAI, for one or multiple links on one

or multiple DIO engines.

This section describes the test for one link one DIO, and will explain how the LLD configure the DIO

engine by default.

1. General parameters:

We want to make a WCDMA test case, with CPRI protocol. The Antenna Interface will use the DIO

engine as the DMA solution.

protocol CSL_AIF2_LINK_PROTOCOL_CPRI

pktdmaOrDioEngine CSL_AIF2_DIO

mode AIF_WCDMA_MODE

aif2TimerSyncSource CSL_AIF2_CHIP_INPUT_SYNC

2. Configuration DIO and data buffers:

We assume that for this test, we need only one DIO engine and only one link. We will not use the full

capacity of the link that is 15 AxCs for CPRI, but only 2 AxCs to make the description clearer. The tests

are made for LOOPBACK, so the data are the same type on Rx and Tx (UL or DL).

3. DL configuration:

Dio parameters for DL, defined by user:
aifObj.dioConfig[i].out = UTILS_local2GlobalAddr(&dio_data[i][0]);

file:///C:/ti/stomas_garage_nice_dev2/cdb/cixcvrApps/garage_nice/aif2Lib/ti/drv/aif2/doc/html/group___a_i_f.html%23gad3f368036edd31fff31c0c6414f50317
file:///C:/ti/stomas_garage_nice_dev2/cdb/cixcvrApps/garage_nice/aif2Lib/ti/drv/aif2/doc/html/group___a_i_f.html%23ga990a27dad6c111542f839e1899262379

aifObj.dioConfig[i].in = UTILS_local2GlobalAddr(&dio_result[i][0]);
aifObj.dioConfig[i].inNumBlock = 8;
aifObj.dioConfig[i].outNumBlock = 8;

Link parameters to only enabled 2 AxCs for the link:
aifObj.linkConfig[i].numPeAxC = 2
aifObj.linkConfig[i].numPdAxC = 2

The AIF2 LLD will configure the DIO engine with these values by default:

 Ingress Egress

NumAxC 2 (-1) 2 (-1)

DmaNumBlock 8 (-1) 8 (-1)

DmaBaseAddr dio_result dio_data

NumQuadWord CSL_AIF2_AD_1QUAD CSL_AIF2_AD_1QUAD

bEnEgressRsaFormat FALSE FALSE

bEnDmaChannel TRUE TRUE

DmaBurstLen CSL_AIF2_AD_4QUAD CSL_AIF2_AD_4QUAD

DmaBlockAddrStride NumAxC (QW) NumAxC (QW)

DmaBurstAddrStride 4 (QW) 4 (QW)

Based on this value, we can determinate the wrap 1 and wrap 2 of the DIO engine, and by doing so the

data buffer size.

- wrap 1 = NumAxC * NumQuadWord

wrap 1 = 2 * 1 = 2 QuadWord = 2*16 = 32 bytes.

- Wrap 2 = wrap 1 * DmaNumBlock

Wrap 2 = 32 * 8 = 256 bytes.

This corresponds to the data buffer size. Once the DIO engine will send 256 bytes of data it

will wrap back to the start address of the dio_data buffer.

With this configuration of the DIO engine, a buffer is sent with multiple AxCs interleave.

On the Rx side, as the DIO engine in ingress is setup in the exact same way, it will reconstruct the packet

identically.

4. UL configuration:

Dio parameters for UL, defined by user:
aifObj.dioConfig[i].out = UTILS_local2GlobalAddr(&dio_data[i][0]);
aifObj.dioConfig[i].in = UTILS_local2GlobalAddr(&dio_result[i][0]);
aifObj.dioConfig[i].inNumBlock = 4;
aifObj.dioConfig[i].outNumBlock = 4;

Link parameters to only enabled 2 AxCs for the link:
aifObj.linkConfig[i].numPeAxC = 2
aifObj.linkConfig[i].numPdAxC = 2

The AIF2 LLD will configure the DIO engine with these values by default:

 Ingress Egress

NumAxC 2 (-1) 2 (-1)

DmaNumBlock 4 (-1) 4 (-1)

DmaBaseAddr dio_result dio_data

NumQuadWord CSL_AIF2_AD_2QUAD CSL_AIF2_AD_2QUAD

bEnEgressRsaFormat TRUE TRUE

bEnDmaChannel TRUE TRUE

DmaBurstLen CSL_AIF2_AD_4QUAD CSL_AIF2_AD_4QUAD

DmaBlockAddrStride NumAxC*2 (QW) NumAxC*2 (QW)

DmaBurstAddrStride 4 (QW) 4 (QW)

Based on this value, we can determinate the wrap 1 and wrap 2 of the DIO engine, and by doing so the

data buffer size.

- wrap 1 = NumAxC * NumQuadWord

wrap 1 = 2 * 2 = 4 QuadWord = 4*16 = 64 bytes.

- Wrap 2 = wrap 1 * DmaNumBlock

Wrap 2 = 64 * 4 = 256 bytes.

This corresponds to the data buffer size. Once the DIO engine will send 256 bytes of data it

will wrap back to the start address of the dio_data buffer.

With this configuration of the DIO engine, a buffer is sent with multiple AxCs interleave.

On the Rx side, as the DIO engine in ingress is setup in the exact same way, it will reconstruct the packet

identically.

6.2 testAIF2_cpriWcdmaCheckRF
This is the test that has been created in order to test the CPRI RELAY setup. It has a special configuration

for the DIO engine has we want to send 2 different signals on AxC0 and AxC1. For that purpose we

bypass the default configuration of the DIO and created one that separated the data for AxC0 and AxC1

into 2 buffers.

5. General parameters:

We want to make a WCDMA test case, with CPRI protocol. The Antenna Interface will use the DIO

engine as the DMA solution.

protocol CSL_AIF2_LINK_PROTOCOL_CPRI

pktdmaOrDioEngine CSL_AIF2_DIO

mode AIF_WCDMA_MODE

aif2TimerSyncSource CSL_AIF2_CHIP_INPUT_SYNC

6. Configuration DIO and data buffers:

For this test we are using only one link, and 2 AxCs for this link.

The data sent is DL format, while the one that is received from the RF is UL.

 aifObj.dioConfig[0].out = UTILS_local2GlobalAddr(&dio_data[0][0]);
 aifObj.dioConfig[0].in = UTILS_local2GlobalAddr(&dio_result[0][0]);
 aifObj.dioConfig[0].outNumBlock = 2400;
 aifObj.dioConfig[0].inNumBlock = 1200;

After the call of AIF_initHw(&aifObj) function we reconfigure the DIO to change the default parameters:

 Ingress Egress

NumAxC 2 (-1) 2 (-1)

DmaNumBlock 1200 (-1) 2400 (-1)

DmaBaseAddr dio_result dio_data

NumQuadWord CSL_AIF2_AD_2QUAD CSL_AIF2_AD_1QUAD

bEnEgressRsaFormat TRUE FALSE

bEnDmaChannel TRUE TRUE

DmaBurstLen CSL_AIF2_AD_2QUAD CSL_AIF2_AD_1QUAD

DmaBlockAddrStride 2 (QW) 1 (QW)

DmaBurstAddrStride 2400 (QW) 2400 (QW)

Based on this value, we can determinate the wrap 1 and wrap 2 of the DIO engine, and by doing so the

data buffer size.

Egress DIO config:

- wrap 1 = NumAxC * NumQuadWord

wrap 1 = 2 * 1 = 2 QuadWord = 2*16 = 32 bytes.

- Wrap 2 = wrap 1 * DmaNumBlock

Wrap 2 = 32 * 2400 = 76800 bytes.

This corresponds to the data buffer size. Once the DIO engine will send 76800 bytes of data

it will wrap back to the start address of the dio_data buffer.

That configuration allows separating the data for each AxCs into dedicated buffers. It is then easy to

check the data corresponding to a specific AxC.

Ingress DIO config:

- wrap 1 = NumAxC * NumQuadWord

wrap 1 = 2 * 2 = 4 QuadWord = 4*16 = 64 bytes.

- Wrap 2 = wrap 1 * DmaNumBlock

Wrap 2 = 64 * 1200 = 76800 bytes.

In order to have the same buffer size as egress we divide the block num by 2.

6.3 testAIF2_cpriRAC
Tbd

6.4 testAIF2_cpriDlLte
This is the reference test for LTE data traffic. This chapter will focus on the PKTDma configuration to

explain the LLD requirement.

6.4.1 Memory configuration

For LTE traffic, the LLD makes use of the monolithic descriptors. In order to make it works, memory

region with the right number of descriptor and the proper size has to be defined and configured.

For LTE 20 MHz, a symbol size is equal to:

- 8848 Bytes for the First symbol of a slot (cyclic prefix different)

- 8784 for the 6 others symbol.

In this test, we are using the predefined AT event 6 that is sub-frame based. There are 14 symbols in one

sub-frame. We will need some sort of ping-pong between the descriptor, so that means that we need 14

* 2 descriptors for TX side, and 14 * 2 descriptors for Rx side. A total of 56 descriptors per AxC.

7. Software implementation of CPRI FastCM over AIF2

7.1 Introduction
AIF2 supports 4B/5B Fast Ethernet, which is commonly used to configure and control RF remote radio

heads (RRH). 4B/5B encoding is happening on top of the SerDes 8B/10B encoding. AIF2 HW

supports 8B/10B encoding at the PHY layer and 4B/5Bencoding at the Protocol layer.

Ethernet frame structure:

CPRI start of Frame characters (JK) and End of Frame characters (TR) is added to the 4B5B

encoded data, and transmitted by AIF2.

1) As per the IEEE 802.3 the data has to be transmitted in the following format

But AIF2 HW follows the big endian convention and transmits the MSB of the second

nibble, this is the violation of the spec and documented in errata for Keystone-I and

Keystone-II devices.

2) JK start of preamble sequence for CPRI has to be inserted at the First octet by AIF2 to form

essentially 8 Octets of preamble , but AIF2 hardware appends this preamble making 9

Octets of preamble. This is also violation of the IEEE 802.3 spec.

Two solutions to overcome this limitability of the AIF2 hardware are proposed:

Sol 1: to make the changes in RRH HW (FPGA for instance) so that it expects data to be received in the

reverse sequence and scans for a 9-Octet preamble, instead of a 8-Octet one.

Sol 2: to implement the 4B5B encoder and decoder in DSP or ARM cores, i.e. a software

implementation of Fast CM and transmits data over AIF2 CPRI control stream HW in Null Delimiter

mode.

7.2 Software workaround implementation
This documents talks about the software implementation of the 4B5B encoder and decoder. The

implementation can be found in .\ti\drv\aif2\test\cprifastcm for reference. Consider the following

preamble of the following stream at MAC level:

Data that is been expected to be transmitted over CPRI is as follows:

The AIF2 hardware in 4B5B mode transfers the data in the following format:

So to correct this misbehavior, DSP software is used to for the 4B to 5B encoding on the Egress side, and

5B to 4B decoding on the Ingress side.

7.2.1 AIF2 configuration in Null delimiter mode

AIF2 is configured to work in Null Delimiter mode, with 0xFF as the Null Delimiter. AIF2 in this mode just

As per the CPRI spec the 5B character “11111” is used as idle character ,so on the transmit side once

the SSD symbols are inserted by the 4B5B encoder into the CPRI stream AIF2 hardware inserts

the idle character and transmits the data. The AIF2 PdLink setup and PeLinkSetup configurations for

NULL delimiter mode is as follows

PdLinkSetup.bEnablePdLink = TRUE;

PdLinkSetup.CpriEnetStrip = 0x0; //Disable Ethernet strip for control channel

PdLinkSetup.Crc8Poly = CRC8_POLY;

PdLinkSetup.Crc8Seed = CRC8_SEED;

PdLinkSetup.CpriCwNullDelimitor = 0xFF;

PdLinkSetup.CpriCwPktDelimitor[0] = CSL_AIF2_CW_DELIM_NULLDELM;

PdLinkSetup.PdCpriCrcType[0] = CSL_AIF2_CRC_32BIT;

PdLinkSetup.bEnableCpriCrc[0] = FALSE; //Disable CPRI CRC for control channel 0

PdLinkSetup.PdPackDmaCh[0] = 124; //Set DB channel 124 as a dma ch for control channel 0

PdLinkSetup.bEnablePack[0] = TRUE; //disable CPRI control channel 0 packing

PeLinkSetup.CpriCwNullDelimitor = 0xFF; //K 27.7 character

PeLinkSetup.CpriCwPktDelimitor[0] = CSL_AIF2_CW_DELIM_NULLDELM;

PeLinkSetup.PePackDmaCh[0] = 124;

PeLinkSetup.bEnablePack[0] = TRUE;

7.2.2 TX 4B 5B encoder

On the egress side before the data is being pushed to the Transmit queue, a 4B to 5B encoder function is

called. The 4B5B encoder kernel expects the data, in the following format:

Generally used preamble for the Ethernet frame: 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55 and the

Start of Frame is 0xD5. The 4B5B encoder does the following data manipulation to the input stream to

form a packet as per the Fast CM specification:

 Each 4Bit Nibble is converted into a 5Bit Nibble.

 Insert SSD i.e JK into the first symbol location of the Preamble

 Append the ESD(TR) at the END of the stream after the CRC .

4B5B output frame structure:

The 4B5B encoder function kernel is implemented using the lookup table approach, each 4Bit Nibble is

used as an Index in the Lookup table and corresponding 5Bit encoded value is loaded using the following

table from AIF2 user’s guide:

7.2.3 RX 5B 4B Decoder

On the Ingress side, when the packets are received software needs to scan for the Start of Frame SSD

and the END of frame ESD and then send the received packet to the decoder. On the Rx side, if there is

0xFF byte in the data that has been transmitted by the RRH, then the AIF2 fragments into multiple

packets at each 0xFF boundary. The application software provided part of the example with this

application report , defragments the multiple packets into a single packet and sends it to the decoder for

further processing.

Consider the hypothetical case, of data being transmitted from the RRH to the Baseband board:

When such a packet is received at the AIF2, AIF2 segments it into 3 fragments as shown below:

The application code in the software provided, scans for the SSD and stitches all the packets into a single

packet till it finds ESD. Once the SSD and ESD are detected and validated the packet is further sent to a

5B to 4B decoder which decodes the RX packet and forms a Ethernet Packet for further processing at the

MAC Layer.

	1. About AIF2 LLD
	1.1 Benefits
	1.2 Features

	2. Software overview
	2.1 Using AIF2 LLD for Wcdma traffic
	2.2 Using AIF2 LLD for LTE traffic
	2.3 Using AIF2 LLD for dual mode traffic
	2.4 Using AIF2 LLD to transfer generic packets
	2.5 Using AIF2 LLD for CPRI fast c&m traffic

	3. Programming guidelines
	3.1 AIF2 LLD high-level configuration
	3.1.1 AIF_ConfigObj data structure
	The high-level or global parameters
	Examples of configuration for general parameters:
	WCDMA test case
	LTE test case
	DUAL MODE test case
	GENERIC PACKET test case

	3.2 AIF2 LLD Link configuration
	Examples of link configuration:
	3.2.1 Antenna carrier configuration
	3.2.2 CPRI flexible antenna carrier packing (LTE only)

	3.3 AIF2 physical Timings parameters
	3.3.1 Pi value
	3.3.2 Using link retransmission (RT)
	Example:

	3.4 DIO engines
	3.4.1 Ingress and Egress parameters
	3.4.2 DIO to RAC operation
	RAC example:

	3.4.3 TAC to DIO operation
	TAC example:

	3.4.4 LLD setting DIO
	3.4.5 LLD restriction
	3.4.6 DIO duplicate ingress traffic on DIO 2

	3.5 PKTDMA channels
	3.5.1 Memory region
	3.5.2 Antenna carriers
	Tx free descriptor queue:
	Tx Queue:
	Rx free descriptor queue:
	Rx Queue:
	Tx, Rx channel:
	Flow:

	3.5.3 Pushing and recycling packets
	3.5.4 CPRI Fast C&M control words

	3.6 Physical and Radio timers
	3.6.1 Using pre-defined AT events and counters
	General Event: Available for all the configuration
	WCDMA event
	For KeyStone-II devices only:

	LTE FDD event
	LTE TDD event
	DUAL MODE event

	3.6.2 Adding application-specific AT events
	Example:

	3.6.3 Triggering physical and radio timers

	3.7 AIF2 exceptions

	4. AIF2 hardware initialization
	4.1 Sequence of AIF2 LLD calls at start-up
	4.2 AT event programming at run-time
	4.3 Re-initialization

	5. AIF2 LLD testing
	6. AIF2 LLD example configuration:
	6.1 testAIF2_Wcdma4x
	1. General parameters:
	2. Configuration DIO and data buffers:
	3. DL configuration:
	4. UL configuration:

	6.2 testAIF2_cpriWcdmaCheckRF
	5. General parameters:
	6. Configuration DIO and data buffers:

	6.3 testAIF2_cpriRAC
	6.4 testAIF2_cpriDlLte
	6.4.1 Memory configuration

	7. Software implementation of CPRI FastCM over AIF2
	7.1 Introduction
	7.2 Software workaround implementation
	7.2.1 AIF2 configuration in Null delimiter mode
	7.2.2 TX 4B 5B encoder
	7.2.3 RX 5B 4B Decoder

